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Abstract

The Automated Test Planning System (ATPS) is a rule-based expert
system designed to aid OSD and Service staffs in their testing
missions. ATPS provides the DTSE&E with an intelligent system for
assessing program risk, harmonizing key acquisition documents, and
building and reviewing Test and Evaluation Master Plans (TEMPs).
The four primary components of the ATPS framework are TEMP
Build, T&E Program Risk Assessment (TEPRAM), TEMP Review and
T&E Program Design. This "system-of-systems” is being built
sequentially and incrementally. Phase I was a feasibility study to
determine the scope of ATPS and gather the information to be
contained in the first module, TEMP Review. Phase II built this
module, which was successfully fielded in 1993. Phase III saw the
development of the TEPRAM, which was fielded in 1994. Phase IV
developed the TEMP Build Module, released 1 March 1995. The final
module, T&E Program Design, will be a management tool designed to
provide oversight of the entire program, to provide summary
information regarding the program's progress, and to provide
management and other component staffs with the utmost flexibility
in using and managing each ATPS module.




Introduction

As the Test and Evaluation (T&E) community continues to streamline
the test planning and review process in the face of budget cutbacks
and personnel consolidation, a need for productive tools for T&E
analysts arises. Such tools should not replace the analyst, but should
act as intelligent automation aids to provide insight and guidance in
the test planning and review process. Expert systems-based tools
often can provide the essential automation required, while targeting
a wide range of potential end-users. Expert systems can benefit the
most inexperienced test planner or analyst by bringing him up to
speed quickly and efficiently, and by providing him with high-
quality corporate knowledge. Even experienced analysts can benefit
by the structure and consistency the software provides in the test
planning and review process.

OUSD(A&T)/DTSE&E has supported the development of one such
automation tool, ATPS, to help capture, maintain, and distribute
corporate knowledge within the T&E community. ATPS is an expert
systems-based software package that provides the user with
information gleaned from composite knowledge gained from DoD
testing organizations, extant paper checklists, and guidance derived
from the DoD 5000 series instructions. The goal of ATPS is to
improve the analyst’s productivity by automating key components of
the test planning mission.

Approach

A successful expert system requires that the domain be well-
bounded, that subject matter experts be available, that using Al
techniques adds value, and that there is an appropriate evaluation
time to test the system in order to ensure that the knowledge it
contains is complete, consistent, and useful.

The domain must be well-bounded. This isn’t to imply that the
problem be trivial, rather, it should be one where it requires some
amount of expertise to perform well. In the larger “test planning and
review” world, several smaller, more bounded domains are defined
for inclusion into the ATPS concept: TEMP Build, TEPRAM, TEMP
Review, and T&E Program Design. While these processes cannot be
fully automated, key component capabilities within these domains
are quite appropriate for automation.
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Subject matter experts must be available. The T&E community is
rich in written guidance and high-level, experienced test planners.
In the development of ATPS, Service experts provide their input on
every module. Quarterly Working Group meetings serve as a forum
for analytical exchange between Service end-user representatives
and the development team. Once per year, a Senior Advisory Group
meets to review the past year’s effort, and to guide the direction of
new component development. The Senior Advisory Group consists of
senior-level OSD and Service officials.

Al must add value. High turn-over in personnel has lead to a deficit
in corporate knowledge and an inadequate transfer of that
knowledge to new analysts and junior personnel. In spite of the
apparent abundance of information, it is often a daunting task to try
to coordinate the information in a useful and efficient manner. By
identifying the key component areas of automation, and applying
successful Al techniques, corporate knowledge is maintained and
distributed in a highly effective manner. In the test planning and
review domain, checklists or “to do” lists are a straight-forward
means of implementing a consistent baseline for development and
review of key acquisition documents. These checklists are
implemented as forward-chaining rules that match on certain session
parameters to determine which checklist questions to present to the
analyst.

There must be an appropriate period of evaluation. Often in the past,
Al and expert systems have been oversold, leading to disappointed
and disillusioned users. It has always been the goal of ATPS to
maintain the “analyst-in-the-loop,” and to act as an aid to the
analyst, not as a replacement for critical thought. Only a human
analyst can make the correct critical judgments necessary in the test
planning mission. In order to ensure that ATPS is providing the
correct level of support to the human analyst, it is important to have
the opportunity to field ATPS to a limited number of users, and to
receive feedback for its continued improvement. This was
accomplished in all phases of development, primarily through
cooperation of the Working Group members.

During each development Phase, there has been a period of review
and evaluation. In Phase I, a feasibility study was conducted to
gather information and to identify potential end-user sites who
would benefit from using ATPS. The Working Group was tasked to

~
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choose an initial module for development based upon the fact-
finding information. In Phase II, a prototype system, the TEMP
Review Module, was developed and fielded. During this phase, the
Working Group had time to evaluate the knowledge, “rules of
thumb,” and advisory information that would go into the system and
make up the TEMP Review checklist. On completion of software
development, approximately 20 Working Group members and OSD
representatives beta tested the software and provided feedback for
improvement. Upon fielding ATPS TEMP Review to the community
at large, Working Group representatives were “trained as trainers” in
the use of ATPS, and then went on to train others at their site. A
mechanism for feedback was implemented so that users could
receive support as needed.

In subsequent phases of development, new ATPS modules are beta
tested by Working Group members first, and then released for
general distribution as discussed above.

OUSD(A&T)/DTSE&E is committed in their support of ATPS as a
means to provide the Services with a useful analysis tool that will
improve the overall quality of Test and Evaluation planning. All
Services remain fully aboard in their support of ATPS.

Architecture

We specify a modular ATPS design consisting of 4 major components
as shown in Figure 1. The TEMP Build Module, is a set of Service
specific checklists that aid in the development of the TEMP. The
output of the TEMP Build module is a rough-draft TEMP in the
5000.2-M format. The T&E Program Risk Assessment Module
(TEPRAM) helps the analyst harmonize key acquisition documents
and provides a structure and process for assessing program risk.
The TEMP Review Module, is the “final exam” for reviewing TEMPs.
It contains a checklist of key points and guidance derived primarily
from the DoD 5000 series documents. The T&E Program Design
Module, is currently in the conceptual state.  This module is
envisioned as an intelligent management tool that will provide
summary information on the program and allow access into any
module within ATPS.




Automated Test Planning System
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Figure 1

The ATPS software consists of a graphical user interface that
seamlessly brings forward expert systems-based tools, hypertext
help, word processing tools, and cross-reference capabilities that are
common across the modules. Individual modules differ primarily in
which rulebases are used to generate the checklists. This gives ATPS
great extensibility. When a new module is added, the majority of the
effort is in developing a new rule base. The user interface is changed
only moderately to accommodate the new module.

Implementation

ATPS is hosted on a PC platform (486 PC) running Windows 3.11. It
is developed in Microsoft C 7.0, the Rule-Extended Algorithmic
Language (RAL), the Microsoft Windows Software Development Kit
(Microsoft Windows SDK), and the Microsoft Multimedia Viewer
Publishing Toolkit. A Macintosh version of ATPS is also supported.
The Macintosh version is developed in MPW C and RAL for
Macintosh.




An expert system attempts to mimic the way a human attempts to
solve a particular problem. Humans tend to use “rules of thumb”,
shortcuts gained from experience, or follow a particular line-of-
reasoning when solving a problem. Experienced analysts attempt
certain test and evaluation tasks by following guidance provided to
them in the form of outlines, formats, or checklists.  The checklist
questions are usually relatively straightforward, with some “yes/no”
type branching which leads to a very straightforward expert systems
implementation using forward chaining production rules. By linking
checklist questions with additional knowledge (rules of thumb),
guidance, and references gleaned from senior-level OSD and Service
action officers , as well as from the DoD 5000 series documents, a
very comprehensive and useful tool emerges for test and evaluation

planning and review.

The ATPS rulebase consists of rules that have both condition and
action parts. The condition, or left hand side of the rule, must be
satisfied before the action, or right hand side of the rule, can occur.
The rules differ from if-then statements in that the order of the rules
is unimportant. It is the job of the run-time system to select which
rule is applicable, given the current data in memory, and to execute
its action. In ATPS, a sample rule represents a checklist question.
Its condition part matches data elements in memory that may
include Milestone, ACAT, and/or Service. Its action part includes
displaying a checklist question, cross referencing the question to the
DoD 5000.2-M, and linking the question to Advisor information.
Other rules in ATPS enable the user to back up to previous
questions, and clean up working memory between sessions.

The Common Framework

Figure 2 shows the main ATPS interface screen as it appears in the
TEMP Build Module (ATPS Release 4.0). The main screen varies
slightly between modules, however, certain core components are
common throughout. The top of the screen shows the Intelligent
Checklist area. This is where checklist questions are displayed to the
user. At the bottom of the screen, the Comments Editor allows the
user to type in responses to the checklist questions.
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Figure 2

The buttons to the right of the Intelligent Checklist area allow the |
user to advance or back up through the checklist. The “Notepad”
button (indicated by the small open notepad icon) allows the user to
enter local guidance, tips, or notes that relate to the current checklist
question. The purpose of the Notepad is to give individual sites
limited ability to tailor the checklist to their needs. The Notepad file
may be distributed to other ATPS users who will be able to view the
notes. The “Reference” button is a cross-referencing feature that
links the current checklist question to its reference in the
DoD5000.2-M. If there isn’t a reference available, as in the case of
TEPRAM’s harmonization checklists, the Reference button is low-
lighted and not selectable. The “Advisor” button activates rules that
find hints, tips or advice that expand upon the current checklist
question. Figure 3 shows an example of the Advisor.




Figure 3

Referring back to the ATPS main screen, to the right of the Comments
Editor, the “General” button activates an editor that allows the user to
enter general comments regarding a session. These comments are
not tied to any specific checklist question, rather, they are session

dependent.

Handy editing features, such as cut, copy and paste, are available and
active throughout ATPS. For example, portions of the hypertext help
documents may be copied and pasted into the Comments Editor. The
Advisor information may also be copied and pasted into the
Comments Editor.
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Figure 4

ATPS has an extensive on-line help facility. Figure 4 shows some of
the help features available. The DoD 5000 series documents are
available on line in hypertext format. Hypertext allows the user to
search through a document in a non-linear format, much like reading
a book from its index. A Glossary of terms is available containing
several thousand entries. An on-line user’s manual and phone
numbers for technical support are also accessible.

Sessions may be saved and resumed at a later time. The ATPS
software will resume a session where the user left off previously.
Sessions may also be written out to an ASCII file which can be read
by any standard word processor.

TEMP Build Module (TBM)

The TEMP Build Module’s intent is to provide a consistent method to
help the user build draft TEMPs in the DoD5000.2-M specified
format. The TBM contains Service-specific guidance, as well as
guidance from the DoD 5000 series and presents this information to
the user through the use of expert-system  generated checklists.
Each checklist question is cross-referenced to the appropriate section
of the DoD5000.2-M. The Comments Editor allows the user to enter
in responses to the checklist questions.




Since each Service has their own “vocabulary”, as well as differences
in their TEMP building approach, the checklists were built to reflect
these differences while still maintaining DoD 5000-level guidance.
Figure 5 shows the session data that helps the system select the
appropriate rulesets and rules to use in the TB session.

Figure 5

As the user steps through the checklist, his responses to the checklist
questions become paragraphs of the TEMP. On completion of the
TBM session, ATPS generates a draft TEMP, outputting the users
comments in the format prescribed by the DoD5000.2-M.

T&E Program Risk Assessment Module (TEPRAM)

The TEPRAM goal is to provide the T&E community a way to achieve
earlier involvement in the system acquisition process. This module
allows the analyst to do two things: harmonize key acquisition
documents (COEA, STAR, TEMP, ORD), and assess program risk from a
T&E perspective. By ensuring that the key documents are
harmonized, overall program risk is reduced

The assessment of program risk is an extremely challenging problem.
 Action officers currently assess risk in a variety of subjective
manners. The common “stoplight” approach often does not provide
the granularity required in assessing a realistic level of risk. TEPRAM
leads the analyst through a series of questions, or an “interview”,
while maintaining some of the flavor of the familiar “stoplight”
approach. At each question, the analyst chooses a risk indicator: red,
yellow, green, or none (high, medium, low, or no risk)., and may also
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enter explanatory comments. There are over 600 questions spread
out among several sub topics to consider. At the end of the
interview, TEPRAM writes out the analyst’s session. The session is
sorted “by risk,” so that the analyst has an at-a-glance view of how
many high, medium, and low risk issues he has identified. This
approach provides the granularity previously missing from the
traditional stoplight method. In addition, the TEPRAM approach
provides a structure and a formal process for determining the root
causes of risk, which have been missing from existing approaches.

TEMP Review Module (TRM)

This module’s primary goal was to provide OSD with a tool to
facilitate oversight of the TEMP review process. This module works
to satisfy that goal by providing OSD and Service PO’s and PM’s with
an expert system generated checklist that would serve as the
standard to which TEMPs shall be reviewed. This helps to ensure
more consistency in the review process, remove some of the
“personalities” from the process and reduce training time for new
TEMP reviewers.

The knowledge sources for TEMP Review were gleaned from extant
paper checklists, experienced DT&E and DOT&E action officers, and
guidance from the DoD 5000 series documents. The ATPS Working
Group and Senior Advisor Group reviewed the knowledge going into
the checklist.

A typical user has a hard-copy TEMP in hand as he goes through an
ATPS TRM session. The TRM poses a question from the checklist and
the user enters his response into the Comments Editor. When all of
the questions generated by the expert system have been answered,
the TRM allows the user to write his session to an ASCII file that may
be read by any standard word processor.

Summary

ATPS is an analysis tool, designed to aid the human analyst, not to
replace technical thought. It provides a standard baseline for TEMP
development, risk assessment, and evaluation within a rich, easy-to-
use, interactive environment. As DTSE&E moves forward,
streamlining the acquisition process by implementing tools such as

13




ATPS will help to improve productivity and meet cost-cutting
measures without sacrificing high-quality work.

Resources

Microsoft Windows, Windows SDK, Microsoft C 7.0, and the Microsoft
Multimedia Viewer Publishing Toolkit are registered trademarks of
the Microsoft Corporation.

RAL is a trademark of Production Systems Technologies, Inc, 5001
Baum Boulevard, Pittsburgh, PA 15213.

MPW is a trademark of Apple Computers, Inc. MPW Cis available
from APDA, PO Box 319, Buffalo, New York 14207-0319.

ATPS is government-owned software, and is available to government
test agencies free of charge by contacting M. Scott Roth (703) 847-
5595. The current PC release, ATPS 4.0 for Windows, contains TEMP
Build, TEPRAM, and TEMP Review, the DoD 5000 series documents in
hypertext form, a glossary of terms, and an on-line user’s manual.
The current Macintosh release, ATPS 3.0 for Macintosh, contains
TEMP Review, and TEPRAM, the DoD 5000 series documents in
hypertext form, and an on-line user’s manual.
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Introduction

Verification of radar warning receivers (RWR) and radar jammers requires radar simulators that
can create complex signals. When an RWR or jammer is being tested and does not respond
correctly to the simulated signal, both the simulator and the EW system must be checked for
correct operation. A third, independent, verification system is required. Due to the complexity of
the radar simulations, an engineer or technician could spend days trying to measure and verify
each threat manually. This paper describes a system based upon commercial off the shelf (COTS)
hardware which can be used to record and verify radar simulation at a rapid rate. Radar signal
data collection and analysis can be accomplished using high-speed digitizers and a powerful PC
to quickly find system faults.

Independent verification of simulator signals is possible with a system that integrates COTS
hardware and Microsoft Windows based software. Sampling of the signal pulses is accomplished
with high speed digitizers. Digitized pulses are collected in a computer and displayed or saved
directly to a hard disk. If the data is recorded, an entire simulation is captured in a "flat database”
file on high capacity hard disks. After the data is collected, the system software allows the
operator to efficiently sort through the data using time and frequency domain analysis tools
resident in the computer. If additional analysis or archiving of the data is required, the system -
data can be exported to one of several standard formats. By taking advantage of COTS
equipment's low cost and ready availability an effective radar verification system can be built
quickly and economically.

RDR-4200 Hardware

The verification system described in this paper is the Westlake Systems RDR-4200 Impulse
Recording System. The RDR-4200 was originally built to meet the requirements of a U.S.
government customer who needed to record large numbers of radar pulses for analysis. The
current systemn uses one of two Tektronix digitizers, the RTD-720A (see figure 1) or the TDS-
684A (see figure 2). These digitizers have 3 dB analog bandwidths of 500 MHz and 1 GHz
respectively. The RTD-720A samples data at up to two gigasamples/sec. The TDS-684A samples
at up to five gigasamples/sec. With these wide bandwidths and high sample rates,
downconverted, pulsed RF signals may be captured and recorded without aliasing. The RTD-

17




720A also has a very long record length of 4 megasamples. The 4 megasample record length is
useful when a stream of pulses with complex modulations must be captured in a single record.
Once an RF signal is digitized, its data is transferred to the RDR-4200 recorder. Data is
transferred using a fast parallel bus on the RTD-720A or via the GPIB interface on the TDS-
684A.
The computer used in the RDR-4200
system is an IBM PC compatible. The
computer's microprocessor is the latest
high speed version of the Intel 80X86
family. Current systems ship with Pentium
processors. The processor speed of the
computer makes it possible to display
digitized data on the system display in
near real-time. In addition to a fast
microprocessor, the computer utilizes the
fastest IDE or SCSI hard disk currently
available to store the digitized data.
Another key component in the system's
computer is an IRIG or GPS time code
- _ L processor board. All data records captured
igure 1. Tektronix RTD-720A Digitizer with the RDR-4200 system have IRIG or
GPS time stamps stored along with each data record. Finally because each customer's needs are
unique, a custom designed RF deck is added to the system. This custom RF deck contains RF
amplifiers, attenuators, AM detectors, and filters per the customer's requirements.

Data Recording

Recording radar pulses for long periods of
time is the key feature of the RDR-4200. ] E—
All the data from the RDR-4200's digitizer ‘
is transferred to the system computer's
memory. After the desired number of

records have been collected, the data is LW@

saved on the computer's hard disk. Data is \i

=0 0=

saved in a "flat" file format that is unique Figure 2. Tektronix TDS-684A Digitizer

to the RDR-4200 system (see figure 3), but
can be easily converted to other formats with the current system software or other programs.

The system's ability to digitize and record data (throughput) is typically fast enough to catch a
live signal with the simulator running at full speed. There is no need to slow down or loopon a
particular simulation. The throughput of the RDR-4200's recording system varies with the
amount of data captured by the Tektronix digitizers. Short records such as 512 or 1024 point
records can be transferred very quickly to the computer. The current system can continuously
digitize and transfer 1024 point waveforms at 100 records/sec. When a longer length record (1-4
megasamples) is required because of signal modulations or long pulse streams, the ability of the
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system to digitize, transfer data, and re-arm for the next acquisition decreases to about 10
records/sec.

One way to improve the overall system throughput and still capture data over long periods of
time is to only digitize a signal when the signal is on. Tektronix digitizers have a mode of
operation called "auto-advance." When the digitizer is running in auto-advance mode, it waits for
a trigger. When a trigger occurs, the digitizer saves one record. Then the trigger is rearmed for
another acquisition. The digitizer does not save another record until it receives another trigger.
By only digitizing a set of pulses when the pulses are on, the memory of the digitizer can be used
more efficiently. In addition, the system throughput can be improved by using short records (512-
1024 samples), saving them in the digitizers memory until it fills, then transferring all the records
to the computer. The software on the RDR-4200 computer handles multiple data records very
easily and puts them all in a single database file. When the RTD-720A digitizer is run in auto-
advance mode, the digitizer can sample a signal, put the signal in the digitizer's internal memory
and rearm its trigger circuit in less than 10 psec. Depending upon the PRIs and frame rates of the
signals being output by the radar simulator, auto-advance can increase the RDR-4200's effective
throughput by (1.) decreasing the time between successive data records and (2.) transferring data
to the computer during simulation "dead times."

The size of the RDR-4200 data files vary
according to the number of records and the record
length used in the Tektronix digitizers. However,
with 1-2 GBytes of disk storage, the RDR-4200
can record hours of sampled data. Once the data
is stored on the hard disk it can be analyzed by
the RDR-4200's own data analysis software. In

File Header

Time 1 | Data Record 1

Time 2 |Data Record 2 addition, many RDR-4200 users have
. successfully converted the RDR-4200 files to
s formats compatible with programs such as
. Mathcad and Matlab.
Time N| Data Record N Ea}Ch rfacord in the RDR—4209 is time stampeq
with either an IRIG or GPS time stamp. The time

stamp corresponds to the universal time value
when the digitizer was triggered to capture the
record. The RDR-4200 time code processor board with its own 10 MHz reference oscillator
allows the system to resolve IRIG or GPS times down to 100 nsec. In addition the data within the
digitizers is internally time stamped to a resolution of 500 psec. The RDR-4200 software
includes the digitizer time stamp in its data files. :

Figure 3 RDR-4200 Data File Format

Recorded simulation data in a database can be recalled at a later time for analysis. This capability
allows analysis by different analysts weeks, months, or even years later. The data could also be
used to supplement a verification test's documentation. Files from the RDR-4200 data could be
archived along with other test data. Lastly, a performance database of the simulator system could
be built up over many years. Using archived data would allow the simulator maintenance
organization to spot RF signal degradation over time. Using archived data, a system might be
able to run a periodic self-test by comparing old database information to current samples.
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RDR-4200 Software

The key to integrating the COTS hardware into an effective verification system is the RDR-4200
system software. All the programs in the RDR-4200 system are Microsoft Windows applications.
The Windows' graphical user interface is well suited to analyzing the recorded radar data with
many points of view. There are two primary modes to the RDR-4200 software, real-time and post
recording analysis software. The real-time software includes the data recorder software and near
real-time frequency and time domain displays. The post recording analysis software takes the
recorded data as input and allows an operator to "visualize" the radar's output from many
different views.

When the RDR-4200 is running in real-time mode, one of the ways that it can be used is in a data
recorder mode. When used as a data recorder, the operator specifies the name of the data file, the
number of data records to capture, and digitizer settings for the current test. When the operator
initiates the data recorder software, the computer tells the digitizer to begin sampling the signal
and transferring the requested data as it is acquired. Acquired data is combined with data from
the time code processor and put in RDR-4200 data files. Multiple signal acquisitions can be put
into a single data file or multiple files.

Another module in the RDR-4200 software includes a real-time frequency domain display. The
RDR-4200 utilizes on board digital signal processing software to display an FFT of the captured
data. The bandwidth of the FFT can be as wide as the 1 GHz analog bandwidth of the TDS-684A
digitizer. Figure 4 shows an example of the frequency domain display of the RDR-4200. The
bottom window shows a 4096-point FFT of the captured pulse data. The top window shows the
frequency of the signal over time. The signal in this case was sweeping its frequency over several
hundred megahertz. The frequency vs. time display can be used to verify frequency agile and
linear FM simulations.

Figure 4. RDR-4200 Real-Time Frequency Domain Display
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The RDR-4200 software also includes several time domain analysis tools. One tool is a real-time
pulse viewer. This viewer is shown in figure 5. This viewer screen allows the operator to look at
a signal with three different windows. One window is a standard single waveform view. Another
is a time domain waterfall display. The third window is a color graded view of the amplitude of
the captured pulses over time. With this pulse viewer it is easy to spot anomalies in a signal's
pulse width or PRI by observing the signal over time.
e R EET L o e

i

Figure 5. RDR-4200 Time Domain Display

Once data has been recorded, another set of graphical tools give the operator tremendous -
visualization power. For post recording analysis, the time and frequency domain tools described
above are available as well as several others. One non-real-time function is called Smartvue.
With Smartvue an operator can step through all the collected data records one by one. If a data
record has an area that needs to be viewed in finer detail, the operator can highlight the area and
zoom in on it (see figure 6). Another section of Smartvue is a pulse analyzer. The pulse analyzer
is set up to measure long data records with multiple pulse widths and PRIs. The output from the
pulse analyzer is a spreadsheet of all the pulse widths and PRIs found in the record. The
spreadsheet data can be exported to a Microsoft Excel compatible file. Smartvue allows an
operator to view and precisely measure each pulse width and PRI combination in a staggered PRI
signal.
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Figure 6. RDR-4200 Smartvue Screen

Conclusion

Today's radar simulators are capable of generating very complex signals. However, complexity
can lead to errors. When an error occurs, a system for independent verification of the simulated
signals is necessary. This paper has described a verification system built with commercial test
equipment and computer hardware. The simulation data is sampled without aliasing while a
simulation is running full speed.

The system described used COTS hardware and Microsoft Windows based software. Once the
data is acquired, it is saved in a database file on the computer's hard disk or displayed to the
operator in near real-time. Recorded data can be immediately analyzed or archived for later use
as test documentation or system performance history. The Westlake Systems RDR-4200 takes
advantage of commercial equipment's low cost and availability to create an very effective radar
simulator verification system.
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ABSTRACT

Combat Systems Test Activity (CSTA) is one of the U. S. Army's major centers for
development and technical testing of weapons systems. Over the past two decades CSTA has
made a significant investment in the digitization of the ballistics and fire control ranges used in
weapons system tests. The list of systems acquired in this digitization process includes: Weibel
radars, Hadland cameras, video scoring of targets, systems to measure blast and chamber
pressures, and flash x-ray imaging systems. This conversion to digital data acquisition systems
has provided CSTA the capability to provide test data for review and analysis in near real-time.

CSTA has also made a significant investment in an activity wide local area network
(LAN). This network has facilitated the collection and transmission of test data, both within the
test ranges and throughout the activity. Test Site Integration (TSI) is the final building block in
this digitization process. TSI is a generic system designed to integrate the digital test
instrumentation and store test data at the various ballistics and fire control ranges located at
CSTA. With this system, the test director and test sponsor have near real-time access to all of the
digital data collected at a particular test range through a user friendly graphical user interface
(GUI) running on a UNIX work station. The GUI allows the user to view, analyze and compare
data from many rounds/runs, displaying text, images, plots, and digitized video.

TEST SITE INTEGRATION

Two major testing functions performed by CSTA are ballistic performance tests of direct
fire munitions, and fire control systems tests of direct fire weapons systems. These tests are
conducted at highly instrumented firing ranges, and generally involve the firing of a number of test
rounds. The data generated from these tests are used by the test sponsors to characterize the
performance of projectiles and propellants, and to assess the accuracy of the fire control systems
of certain weapons.

A typical test range configuration consists of a firing barricade with a gun mount for
stationary weapons, or a hardstand for mobile weapons systems. Flash x-ray systems are used to
capture images of the round while it is still obscured by muzzle flash and smoke. Hadland digital
cameras are positioned to capture images of the projectile just after muzzle exit. Weibel Doppler
radars are used to determine the velocity of a test round, both at muzzle exit and during the flight
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down range. The gun tube is instrumented to provide internal ballistic pressures, stress and strain
measurements. Hadland digital cameras or digitized video images are used to determine the
trajectory of a projectile during the flight down range. During fire control performance testing,
digital instrumentation is configured to monitor the ballistic computer, gun tube pointing
direction, and gunners aim point. These sources provide data for the evaluation of the fire control
subsystems.

These test instruments are controlled by technicians from various groups within CSTA,
and they are responsible for the data produced by that source. The test director oversees and
coordinates with the data collection technicians and is responsible for the actual conduct of the
test. A representative of the test customer is often present to ensure proper test conduct and
review test data. As the speed and power of the various data collection systems has increased, it
became apparent that a system was needed to integrate the data generated at the test site, and
present this data to the tester and customer in an efficient and user friendly manner. TSI was
designed to meet this need.

TSI consists of three major thrusts. The first thrust is the interconnection of digital
instrumentation at the various ballistic and fire control test ranges using standard networking
technologies. The second thrust involves using this network to collect and collate all of the digital
test data acquired at a particular range. The third effort involves the development of a user
friendly interface that will provide the test director and customer with information on the status of
range instrumentation and provide access to test data in as close to real time as possible. One
important goal was to design the TSI system to be as generic as possible. This will allow the
system to be installed at a variety of test ranges and facilities with a minimum of modification.
Figure 1 illustrates how TSI will be implemented at a typical test range.

CSTA has made great strides in implementing an activity wide Local Area Network
(LAN). An extensive fiber-optic back-bone has been installed, providing fast, reliable data
transmission capabilities between many areas of CSTA. As the facilities at the ranges are
improved, ethernet sub-networks are being installed and connected to the fiber back-bone. Asa
result of this investment in network technology, test data can be transferred very efficiently, not
only within the test site, but throughout the entire activity.

CSTA has also made a large investment in upgrading the data collection instrumentation
that is used at the various test ranges. Most of these modern instruments are microprocessor
controlled and provide data in a digital format. Test instruments that use film or video tape are
being replaced by instruments such as the Hadland digital cameras or the digital flash x-ray
system, which provide data in an electronic format. In order to minimize network connectivity,
new test instrumentation was targeted to run on platforms that support the UNIX operating
system. This was not possible in all cases, but the vast majority of data collection systems used at
the activity are now UNIX or PC based.

One of the primary benefits of the network implementation and range instrumentation
upgrades is the availability of test data for immediate review and post processing. Test directors
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can now have access to data in near real time. An organized system was needed to take
advantage of the network, and ensure that this data was properly collected and stored.

TSI was designed to be a data repository for all the digital data collected at a test site. All
of the digital instrumentation transfer test data to the TSI system running on the test directors
work station. The data are then stored using a simple file and directory naming scheme. This
scheme effectively archives the data so that it can be located and reviewed at a later time. This
directory structure will also facilitate the loading of test data into the corporate database that
CSTA will be implementing in the near future.

The basic TSI directory structure is a hierarchical structure with a directory corresponding
to the test site at the top. Subdirectories corresponding to the particular tests conducted at the
test site are below the test site directory. A subdirectory for each data source used for a
particular test are below the test directory. The data files from these data sources are placed in
their corresponding directories, named for the round/run that generated them.

In conjunction with receiving and storing test data, the TSI system notifies the users
through a graphical interface that data for a particular round/run has been received from a
particular test instrument. The user can choose to view this data at any time. Users can currently
view numeric data, text, still images, and plots. Subsequent upgrades will include capabilities for
viewing digitized full motion video. The following is a list of digital data sources an their statuses
in regard to incorporation into TS '

Data Source Display Formai(s) Status

Ballistic Pressures Text and Plots Fully integrated.

Weibel Radar Text and Plots Fully integrated.

Hadland Digital Cameras Images Fully integrated.

Video Scoring Text and Images Fully integrated.

Digital Flash X-ray Images Awaiting delivery of system.
Meteorological Data Text Awaiting LAN connection.
Noise Monitoring System  Tex Awaiting LAN connection.
Digital High Speed Video  Images Awaiting delivery of system.

The graphical interface also informs the user of the current status of range
instrumentation. The test instrumenis send messages over the network, informing the TSI system
of any changes in the status of the instrument. These messages are displayed on the graphical
interface, eliminating the need for the test director to query his support personnel over the radio.
Figure 2 shows a representation of the main TSI interface configured for a typical test.

The graphical interface also contains 2 Countdown Automated Procedure (CAP) that is
used o initiate 2 system countdown, arm designated instruments at specified points in this
countdown, and then fire a test round. The CAP displays a small countdown clock and an abort
button on all of the UNIX systems used at a particular test range. Any of the test personnel that
have access to a UNIX system on the range can use the abort bution to stop the countdown. This
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last second check increases range safety, and decreases the number of rounds fired with inactive
or improperly configured instrumentation.

The standard communications protocols used for the TSI system are the Transmission
Control Protocol and Internet Protocol (TCP/IP). TCP/IP are industry standard network
communication protocols. TCP/IP is platform independent, allowing diverse instrumentation to
communicate over the network. The Remote Procedure Call (RPC) protocols are used on top of
TCP/IP and provide the actual vehicle for transferring messages and data within TSI. When using
RPC, one computer system is configured as a server. This server is programmed to provide one
or more services to remote clients. The scope of the services provided is only limited to the
capabilities of the server computer. Other computers access this server as clients. The clients can
request any of the services that the server is programmed to provide, transferring data and
messages to and from the server if necessary.

The capabilities of RPC mesh quite well with the TSI system. The TSI work station is
configured as the RPC server, and the test instrumentation are configured as RPC clients. The
server is programimed to provide many services to the clients, one of which is the transfer of data
files from the client to the server. The TSI system can also accept status messages from the
instrumentation, and it can transmit current test configuration information back to the test
instrumentation in order to keep such information up to date. As the TSI system expands, it is
anticipated that the list of services provided by the TSI server will increase.

The Graphical User Interface (GUI) is an extremely important part of the TSI system.
The GUI is what the user will use to interact with the range instrumentation and test data. The
interface for TSI is 2 Motif based program running under X-Windows using the UNIX operating
‘system. The user interface was developed using UIM/X, a Motif development environment
available for most popular UNIX plaiforms.

When a test director starts the TSI program, he is presented with a window that has a
toolbar and pulldown menus. By using the toolbar or menus, the user selects the test site being
used for the current tesi. These test sites are presented in a popup selection box. After a test site
is selected, the user is asked to select a test type from a popup list of test sites. After a particular
test is selected, the program displays a row of buttons for each data source (test instrument) used
for the test selected. The test director then selects a round or run from a list of previous
round/runs executed for this particular test. If the test director desires, a new round/run name can
also be entered.

The array of data source push buttons provides for most of the functionality of the TSI
system. These buttons provide access to data from current or previous rounds/runs. The status
message from all the data sources are displayed in these buttons. The post processing and
analysis programs are also initiated in this section of the interface.

In addition to the data source specific buttons, the toolbar and menu system provide many

useful features for the user. The test direcior also has total control of the actual test
configuration. Individual test sites, tests, or data sources can be added to or deleted from a
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configuration at any time. These utilities automatically configure the directory and file structure
when new items are added.

Presently, TSI has the capability of displaying still images, text, numeric data and plots.
Future upgrades will include video images. When it is possible, off-the-shelf software such as
commercial image display programs and text editors are used for displaying test data. This
maximizes the utility to the user and reduces the expense of developing similar programs in house.

CSTA has developed a Universal File Format (UFF) that is to be used for all data
collected within the organization. The TSI system is designed to accept and read UFF data from
the various data sources at the test ranges. All of the instrumentation software written for the
initial implementation of TSI used this format.

UFF data files contain binary data. In order to display this data to the user, routines were
written to extract the binary data and convert it to ASCII for display in the TSI interface. Any
images collected at the test site are embedded in a UFF data file before being transferred to the
TSI system. Routines were created to extract image data from UFF data files and display it.

Many data analysis routines are currently being rewritten or recompiled to execute on the
TSI platforms. In situations where this is too expensive or time consuming, the remote shell
feature of the UNIX/X-Windows operating system is used to run the analysis program on a
different machine, displaying any output to the TSI terminal. By utilizing these features, the test
director will have a large array of analysis tools available for his use.

CSTA plans to install TSI systems at all of the major ballistics and fire control ranges used
by the activity. These systems will provide tester and customer with better access to both raw and
processed test data. This increase in data efficiency will allow for timely changes in test scope and
direction, providing both the tester and customer better products and services.




STREAMLINING TEST AND OPERATIONAL SYSTEMS

James LiVigni *
Timothy Conn
Fred Schreiber
Capt. Brian Fischer USAF
Capt. Richard Jernejcic USAF

EG&G Management Systems Inc. *
RATSCAT Operations
Holloman AFB, NM 88330

46th Test Group
Radar Target Scatter Division
Holloman AFB, NM 88330

Abstract

At any site or sites where multiple systems for test and data collection exist, an increase in
efficiency, effectiveness and overall quality would be realized if the systems could be made simi-
lar from a planning and operational standpoint. If systems were made similar, operations, main-
tenance and training resources could be leveraged and more consistent quality assurance and con-
figuration management practices put in place. Also if key elements of control, collection and
processing could be standardized, each system could used to augment the planning and data pro-
cessing for other systems. Finally, if each systems' specific control collection and processing
functions could be encapsulated and made system independent, a method of test execution could
be established so that tests could be planned and conducted identically from a functional stand-
point regardless of the particular system implementation. This functional building block ap-
proach has been used successfully in Automated Test Equipment and while some testing and op-
erations require significantly more user interaction these principles are also applicable.

By encapsulation of the system specific interfaces and controls using embedded processors
with database driven command and control software, generic functions can be created. These
functions provide a de-coupling of hardware dependencies from the overall test flow. In addition
if the embedded subsystems can provide a standard output format and perform real time calibra-
tion, previously off-line process can be modified to perform real time diagnostics. The combina-
tion of these two features can significantly speed overall test time and allow for similar test and
diagnostics methods on systems with dissimilar radar hardware.

31




I. INTRODUCTION
A RATSCAT

The Radar Target Scatter (RATSCAT) Facility is the primary DOD facility for radar cross
section (RCS). measurements. RATSCAT is comprised of two physically separate sites,
Mainsite and RATSCAT Advanced Measurement System (RAMS) site. At RATSCAT, full-
scale, flyable aircraft and missiles, operational vehicles, aerospace models, and miscellaneous
targets can be accurately measured for radar target signature, both monostatic and bistatic,
antenna gain and radiation patterns, and performance of active electronic systems. These
measurements support weapons systems development, technology assessmentis, and related
Department of Defense and U.S. Government sponsored efforts.

B.  History

This paper is largely based on experiences from the Data Acquisition and Processing
Improvement Systems (DAPS) project, an improvement and modernization program at the Radar
Target Scatter Division (RATSCAT), Holloman Air Force Base, NM. The project was started in
1992 and initial operating capability (JOC) for the first system was April of 1995. The objective
was to replace the data acquisition, control and processing subsystems from five separate Radar
Measurement Systems, all having essentially the same mission, but each having very different
hardware, software, and operational implementations. The replacement systems were to have
common processors and peripherals, as well as a common hardware and software architecture.
The goal of this effort was to leverage training and software improvements across all sites,
streamline operations, simplify hardware and software maintenance and provide for future
growth. The DAPS effort would in effect change the operations paradigm for each specific Radar
Measurement System, and provide a site wide paradigm for control, collection, and processing of
RCS datz. The fundamental philosophy of the effort was “operations should dictate the
hardware and software....not the hardware and software dictate operations”.

C. Scope

This paper discusses the technigues used to encapsulate the hardware from each site and
provide 2 standard method of test planning, test execution, data management and product cre-
ation. Also discussed are the utilization of common embedded processing components that can
be configured to provide common data formats and pre-processing, regardiess of the Radar sys-
tem.

II. PROBLEM SYNOPSIS

At RATSCAT there are five major RADAR Measurement Systems. Each System was ini-
tially delivered to the Air Force based on specifications that dictated functional and performance
requirements i.e. frequency, power, dynamic range, number of range gates, RCS product types
etc. While the specifications did an admirable job defining what needed to be done, each
specification let the vendors of each system figure out how to implement those specifications. .
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While this separation of responsibilities is fine for a single system, the result when you have
purchased five separate systems over a number of years is that the implementation varies
significantly from system to system. As a result RATSCAT found itself with a number of
systems utilizing HP1000s, VAX 11/780s, MicroVAXs, HP9000/800 and PCs for data
acquisition and control. Each radar system's data acquisition and control subsystems utilized
different user interfaces, media types, data formats, feedback, status mechanisms, etc.. In
addition, each acquisition and control subsystem had different operational requirements based on
the differences in the Radar systems themselves. These differences were exagerated further by
the fact that not only was each radar measurement system different, but they each controlled
different measurement ranges, with correspondingly unique field probing, calibration, target
rotation, and target elevation systems.

The result of this diversity was that operations, training, and maintenance, along with any
improvements in methods or techniques, could not be readily leveraged. Further complicating the
problem was that a number of the existing processing systems were becoming obsolescent, and in
need of replacement. For DAPS to be successful in providing a single set of hardware and soft-
ware that would streamline operations this functional and temporal diversity of systems would
have to be dealt with.

. THE APPROACH

The approach taken to solve the problem was divided into three parts . Part one was to define a
single set of physical things that needed to be done i.e. setting bit patterns, receiving bit patterns,
merging bit patterns etc.. Part two was to define a method of describing operational functions and
methods by which these functions could be executed independent of hardware implementation.
Part 3 was to develop a system which could translate the functions into the physical entities that
would implement them.

IV. CREATING A SINGLE SET OF INTERFACE REQUIREMENTS

The goal here was to find an all encompassing set of interface requirements that would span
the existing interfaces. In addition, all the commands and related parameters used to control and
communicate with each piece of radar and range equipment had to be collated. The interfaces
were decomposed by type and protocol requirements, as well as by average and burst data rate
requirements. Figure 1 gives and overall flow of the effort. The result of this effort was the
creation of a single set of functional and performance interface requirements for the system. From
these requirements, a single set of interface drivers was then created that was adequate for all
sites.

Define where

the radar Determine the

subsystems functional and Collate all the Synthesize the
P performance % commands and B requirements
c?antgegcaggsi:ihoz requirements for associated into a single
q each of these parameters. set.
and control interfaces

systems began.

Figure 1 Interface Determination Flow Diagram
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V. DETERMINING OPERATIONAL ELEMENTS
A Finding A Cominon Thread

If 2 number of systems all have the same mission one can reasonably assume that at some
level of abstraction they all do the same things. This was the initial premise of the DAPS analy-
sis effort. It was quickly found that the one thing that all the sites had in common was the
RATSCAT mission flow. This mission flow provided the top level operational sequence of
events that were required, from the time a customer expressed interest in bringing a test program
to RATSCAT until the final data product was delivered. This sequence of events was critically
important to the effort; it had no coupling at all to a particular hardware implementation. It was
this sequence of evenis that formed the basis for the effort to streamline the individual
measurement systems was based. '

B.  Defining Common Procedural Elements of Test and Operations

By decomposing the mission flow requirements into lower and lower levels based on proce-
dures that needed to be executed (regardless of the particular implementation) a hierarchy of pro-
cedural elements was developed. When put together, these elements allow the users and system
support personnel to perform all the activities required to successfully construct and execute a
test at any site, as well as generate all the required data products. Table 1 gives some examples
and descriptions of these "atomic" operational elements. These elements have two distinctive
features: 1) they are not hardware dependent; and 2) all elemenis of the mission flow (with
respect to data acquisition and processing) can be made up of different combinations of these
elements.

Table I Example Atomic Operational Elements

ATOMIC OPERATIONAL ELEMENTS DESCRIPTION

Position Antenna Position antenna in height and squint angle

Rotate Target Rotate target in azimuth at specific speed over specific
angle

Set Target Elevation Set elevation of targe! on pylon

Set PRF Set pulse repetition frequency

Set Range Gate Set range gate in time and pulse widih

Move File Move date file from one media to another

Display Message Display an alarm, warning or procedural message to
operator

Set Frequency Set frequency or start and stop frequencies

Start Collection Start collection of data

Create Product Create a display, plot or file

Archive Data Store system parameters and data from test cut

Log Hem Log an item to a security or operations log file

Wait Wait for completion of an event

Get Parameters Query a device or devices for data
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VL. TYING OPERATIONAL ELEMENTS TO PHYSICAL ACTIONS
A, Development of Test Planning and Execution Elements

Once data acquisition and processing function had been broken down into individual opera-
tional elements, two things needed be to accomplished. First, provide a method of organizing
these procedural elements into different groupings to perform the larger operational procedures
while maintaining the flexibility required to execute low level diagnostics. This method (known
as test planning), once organized, provides a method of executing these elements on all the
different systems at RATSCAT. This was labeled test execution.

To accomplish this, the team created of two levels of hierarchy, one procedural and the other
physical, and then used an integral data base to tie them together. Table 2 gives brief descriptions
of the procedural hierarchy developed. This organization follows the mission flow
decomposition of the range users requirements into smaller and smaller executable elements.
Table 3 outlines the physical hierarchy that ties the operational elements to physical devices.

Table 2 Test Execution Hierarchy

NAME DESCRIPTION EXAMPLES
Test Map e Collection of scenarios that | = Program 97-22 phase a test
enables all tasks to be com- map, system response
pleted for a test program, maintenance test map

test program phase or main-
tenance and diagnostics

- Allows for scenarios to be
added deleted and moved
around scenarios can be
copied from one test map to
another or from a default
set in the database

Scenario » Collection of procedures to | * Target a data collection,
perform a specific task primary calibration HH pole,
«  Procedures are executed field probe
sequentially
»  Automatic or manual
sequencing
Procedure ¢ Collection of one or more » 10 degree elevation, rotate
function that do a specific 360 degrees, create suite
physical thing of plots for target a, collect
= Function are executed 370 c_ieg(ees of data HV
sequentially polarization
»  Automatic or manual
sequencing
Function »  Atomic leve! of operation » Rotate target, raise
procedures antenna 3, set radar
+  Provide lowest level of polarization, plot RCS vs.
interaction for users under azimuth, move data file

normal operation
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Table 3 Physical Activity Hierarchy

NAME DESCRIPTION EXAMPLES
Command o Hardware specific series of |- Download Frequency table
actions that execule on a parameters, Set RF
particular device attenuation, Read Antenna

o Tied o site hard- Height

wareffirmware of radar mea-
surement system or {o ac-

guisition and control system
for post processing activities

o Can Generale Actions

Action o Lowest Level of RADAR o Set bit 3 address 2523,
and Range hardware Read bit 7 at address 2012,
control Move 342 to address 1034

o Aciual Physical operation
performed on Hardware

o Executed Immediately

B. Test Plonning Sofiware Development Overview
{3

In order to perform test planning software was developed to provide creation, modification
and organization of test maps, scenarios and procedures. At RATSCAT, test engineers are prin-
cipally involved in the creation of test maps for programs, while radar systems engineers are
principally responsible for the creation of test maps for maintenance functions. By de-coupling
the hardware from test planing, DAPS created an environment that allows the same sequence of
evenis to be executed regardless of site. For example, field probing typically executes the
following procedures at all sites; while the implementation may vary this from site to site, the se-
quence does not.

Set up Radar for Probe

Tum On Real Time Display

Start Collection

Raise Probe

Stop Collection

Lower Probe

The result of this organization of elements is a tremendous amount of flexibility to support
the customer's needs, from R&D through production. Figure 2a shows the implementation of a
test map which has scenarios composed of single procedures executing a single functions. While
it may seem cumbersome at first, this one-to-one scenario to function mapping is quite useful to
maintenance when exercising a specific portion of a radar measurement system. Figure 2b shows
the structure of a test map that is geared toward production, where the test and data processing
requirements are well defined, and the only thing that is going to change is the target
configuration.
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Test Map Test Map
(Low Level Implementation) (High Level Implementation)
Set Channel 1 Boresighting & Cal.ibra.tion
Set Channel 2 System Characterization

Target A Data Collection
° Target B Data Collection

Set Channel 6 Data Package

Set Plot Rectilinear
Set Axis Y 7b
Set Scale Y

Set Axis X

Set Scale X

Set Title

RT Display

Set Target Azimuth

Set Target Elevation
Raise Antenna 1

Move Antenna 1 Azimuth
Move Antenna 1 Elevation
Raise Antenna 2

Move Antenna 2 Azimuth
Move Antenna 2 Elevation

L]
Raise Antenna 6
Move Antenna 6 Azimuth
Move Antenna 6 Elevation
Set Target Azimuth
Set Target Elevation

2a

Figure 2 Realization of Test Matrix

C. Creation of Functions

The function is the lowest level of the operational system that the user sees. It provides the
bridge between the low level operational elements and the site hardware. Functions provide that
site independence of operations, that is one of the main goals of the DAPS effort. Creation of
functions is accomplished by the development team working with each systems radar engineers
to define what site specific commands and parameters are required to execute each operational el-
ement. The test execution software provides a list of utilities (called generic functions); all opera-
tional functions can be created from a list of thirty-three generic functions. Some functions pass
data and commands to the embedded systems, while some are used for local data management and
processing. Figure 3 gives some examples of this mapping of operational elements to physical
actions.
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Degtination Fits Path)

Figure 3 Operational Elements Translation To Physical Actions

VI SYSTEM IMPLEMENTATION
A, Overview

The DAPS system is broken down into two subsystems. Test planning, test execution, data
management, security management and product dynamics (changes to products, functions,
database tables eic.) are part of the Test Data System (TDS). The TDS has all the system pe-
ripherals for plots logs, data products, etc. In addition, the TDS provides for storage of collected
data. All the site specific hardware and firmware at each site interfaces to the Embedded
Resource System (ERS). It is this embedded system that translates commands and status
requests into physical actions and provides real time data for storage and display.

B.  Test Dato Systeis

Ti is in the test data system that test maps, scenarios, procedures, and functions are created
during test planning and then executed during test execution. F igure 4 gives an example of a test
execution window . As each scenario is executed it appears in the test execution log portion of
the window. This execution log can be annotated with comments and can be used as both a
record of events as well as a methed of obtaining metrics on system execution. Status on all per-
tinent system parameters can be accessed by pressing the appropriate button within test execu-
tion. These can than be iconified , moved, or closed as required. Security management, data
management, and product dynamics windows and capabilities are not shown.
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Figure 4 Main Wmdow (Site Selected/De(@rmm ed)

C. The Embedded Resource Systern

The mission of the embedded resource system is to translate commands from the TDS into
site specific physical actions and to provide real time data processing for the data acquired. The
system interprets commands and translates these commands into siie specific physical actions.
The ERS is made up of a core suite of control and communications sm, vare called the embedded
resource manager (ERM), including device tables, interface drivers and daia archive and display
engines. Together these elements provide control and commumcaam with all the site specific
hardware and firmware as well as provide real time processing to the archive and display
subsystems. Figure 5 is a simplified block diagram of the test execution portion of the DAPS

system starting with the test map and ending with actions performed on physical devices.
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Figure § Test Execution Overview

D. Commmand Mowitor

All commands and requests for siatus are routed by the ERM to the command monitor from
either the TDS interface or a diagnostics interface. The command monitor utilizes command ta-
bles to check on the validity of input commands; once verified the embedded system will route
the cornmand to the proper device table. Typical control commands will have a unique message
ID, command name, device ID, as well as the required parameters. The command monitor will
determine if that device exists at that site and if the command has all the required information. If
it does not it will refurn 2n unsolicited message to the TDS cormresponding to the type of error en-
countered.

E  Device Tables

For each device that the ERS is required to communicate with and/or control there exists a
device iable. This table contains all the specific information required for control of that device.
Once & command or request for status is decoded by the command monitor, the ERM will route
the command to the appropriate device table. The device table is effectively a small copy of the
overall system database. It checks if the value is within limits, and it will either utilize the com-
mand to vector to the appropriate action (bit pattern, ASCII string. signal, etc.) or it will calculate
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the appropriate output. Once available, the device table will present the ERM both the response
and the interface ID that the response need to be sent to.

F.  Interface Drivers

Once a command or request for status has been processed through the device table, the ERM
will route the action to the appropriate interface driver. For each system interface type there
exists an interface driver that provides all of the timing and communications required for that
particular interface. The performance and function of this driver was determined by the
syntheses of all Radar system interfaces of that type into a single requirement that would meet
all the different Radar systems requirements for that interface. In the case of status requests or
unsolicited events (error messages, bus time-outs, warnings) the interface driver will present the
status to the ERM.

G. Local Status Monitor

The local status monitor is effectively a table that converts low level status into appropriate
ASCII messages. These ASCII messages are then routed by the ERM to the TDS. Based on the
status message type, the message will appear in its own window (errors and warnings) or will ap-
pear in the status portion of test execution ( normal systems modes and states). Otherwise it
will be routed to one of the five parameter windows. The TDS is designed to send a request for
status a periodic intervals as well as on request.

H. Real Time Processing Engine

One of the most important aspects of the DAPS system is its real time processing engine.
This engine is made up of a quad digital signal processing board utilizing four TMS320C40s, and
is referred to as the radar data pre processor (RDPP). The RDPP, along with custom "C40
based" Universal Logic Interface (ULI) Boards, essentially provide 8, 16, 32 and 64 bit bi-
directional interface and processing of Radar Cross Sectional (RCS) data from the Radar
measurement system. During data acquisition, combinations of input ULISs, along with the
RDPP, convert the Radar’s unique data format into the Common Data Format (CDF) that is the
current standard in the RCS community. Once converted, the RDPP then provides output ULIs
with both “raw” data for archival, as well as calibrated, motion compensated 1D and 2D
processed data for real time display.

V. CONCLUSION
A Program Synopsis

The DAPS effort has resulted in a robust architecture that is will meet the data acquisition
control and processing needs at RATSCAT, both now and for the foreseeable future. An
example of the systems adaptability from site to site was evidenced in the relatively small
amount of software redesign between the first two system being deployed. The TDS software
required only minor table changes and the ERS required a function change in the RDPP and a new
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set of command, status and device tables. The remaining systems will require similar amounts of
changes.

What did not change at all is test planning and execution. Both systems will conduct tests in
a similar manner with all the hardware differences effectively hidden from test operations.

B Recommendations

The DAPS effort required a significant amount of analysis and design — more than any single
system upgrade would. If only one or two systems are to be made similar with no more new
systems planned, this de-coupling effort has only marginal advantages. On the otherhand, there
is a desire to provide standards of operations, data acquisition and conirol for a number of
existing systems, this method of hardware encapsulation has numerous benefits in terms of
leveraging manpower and providing consistent quality across the sites. This also allows for a
system robust enough to meet future system needs with minimal changes

C. Advantages

Common procedures, nomenclature, training, and resources gives the test engineer a common
pool of resources for test conduct. In addition, the ability to view the execution sequence via the
execution log (Figure 4) provides metrics that allow creation of new operational elements to
further sireamline operations. For example, if an engineer finds that a number of procedures are
always used in a certain way, they can be put into a single procedure. The same holds true for
scenarios. As confidence in the system grows, more and more procedures with more and func-
tions in them will be executed in automatic mode. All in all it is believed that this effort will
provide RATSCAT with a state-of-the-art operational capability for the foreseeable future.
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SANDIA NATIONAL LAB’S PRECISION LASER TRACKING SYSTEMS
Duane Patrick

Sandia National Labs
Energetic and Environmental Test Department
Albuquerque, New Mexico 87185

Sandia Labs’ mobile tracking systems have only one moving part. The double gimballed 18"
diameter beryllium mirror is capable of constant tracking velocities up to 5 rads/sec in both
axes, and accelerations to 150 rads/sec/sec in both axes. Orthogonality is < 10 microradians.
The mirror directs the 488 and 514 nm wavelength CW laser beams to adhesive-backed
reflective material applied to the test unit. The mirror catches the return beam and visual image,
directing the visual image to three camera bays, and the return beam to an image dissector
behind an 80" gathering telescope. The image dissector or image position sensor is a
photomultiplier with amplifying drift tube and electron aperture and its associated electronics.
During the test, the image dissector scan senses the change in position of the reflective material
and produces signals to operate the azimuth and elevation torque motors in the gimbal assembly.
With the help of 1 1/8” diameter azimuth and elevation galvonometer steering mirrors in the
optical path, the laser beam is kept on the target at extremely high velocities. To maintain a
constant return signal strength, the outgoing beam is run through a microprocessor controlled
beam focusing telescope.

To produce real time three-dimensional position data, the tracker uses slant range and
azimuth and elevation encoder readings. The ranging is accomplished by modulating the beams
with electro-optical modulators, and doing a phase comparison between outgoing and reflected
beams. The range information is accurate to within 6”. The angular information coming off
18-bit binary electro-optical shaft encoders, is strobed into a minicomputer. along with an Irig
time every millisecond. The encoder resolution is 24 microradians. The raw data is then
desampled and reduced and used to produce trajectory data in a variety of media within an hour
after the test. With these tracking systems, data, as well as closed loop servo control, pass
through a real time control system. This microprocessor control system consists of seven single
board computers residing on three inter-connected VME chassis, the main chassis and two
subordinate subchassis. The main chassis (fig. 1) has five processors performing the following
tasks:

1) Command interface with the operator, and data preprocessing and formatting.
2) Communications with source of slaving data and associated coordinate
conversions.

3) Trajectory prediction calculations when tracking a target. When the target

is lost the predicted path will be followed in hopes of reacquiring the target.
4) Control of the tracking electro-optics.
5) Control of the target ranging system.
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Subchassis #1 (fig. 2) controls all camera, lense, rotator, and laser beam expander functions.
Tracking from a gimballed mirror results in image rotation. The camera stages are counter-
rotated to maintain a level field of view. Photometric coverage includes shuttered video with
displayed timing to the millisecond, as well as high-speed 16mm film with numeric timing, for
more detailed analysis later. The laser beam expanders can converge or diverge the two beams
to keep a constant return signal strength from the target. The green beam is used for coarse
ranging and tracking. The blue beam is used for intermediate and fine ranging.

Subchassis #2 (fig. 3) performs gimbal control and tracking functions. Gimbal movement
can originate from joystick or test definition commands, or from tracker error signals generated
by the tracking image dissector. In either case, the position error is determined and the gimbal 1s
driven to null that error. Gimbal response and serrvo compensation are both determined
digitally.

The laser tracking systems have the ability to acquire targets by initial lock-on, transfer,
acquisition on the fly, or joystick to auto track. Transfer tests require the system to lock on to a
surrogate target transferring to the real target when it obscures the surrogate. This allows high -
speed acquisition of targets with no scanning by the image dissector. Acquisition on the fly
enables the system to lock on to a target passing through the diverged laser beam pattern.
Joystick to automatic laser tracking is useful in manually following slower targets until laser
lock is achieved.

In the last twenty-five years at Sandia Labs’ Coyote Canyon Test Complex’s 10,000-ft. sled
track and 5,000-ft. aerial cable test facilities, Sandia’s laser trackers have supported hundreds of
test projects. Ranges to 25,000-ft. and velocities to 6,500 ft/sec. have been supported by a single
tracker. Some of the test programs supported were WAM, SADARM, SFW, DAMOCLES,
DIRCM, MAWS, and ATIRCM.

For tracking rocket sleds, aircraft and helicopters, missiles, and submunitions, the
introduction of Sandia’s laser trackers as a single station solution for Time Space Position
Information (TSPI), has cut costs and data reduction time significantly as well as improving
data quality. The laser trackers have proven to be reliable, state of the art tracking systems
capable of supporting a wide range of test requirements.
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Application of the Avionics Data Visualization
Imtegration System Environment
to Different Test Domains

David Calloway
David.L.Calloway@cpmx.saic.com

SAIC
429 S. Tyndall Parkway, Ste H
Panama City, FL 32404

Abstract

This paper describes various applications of the Aviomics Data Visualization
Integration System Environment (ADVISE), am on-going development effort
sponsored by WIL/AAAF-2 under the Embedded Computer Systems Readiness
(ECSR) contract. The emphasis in this paper is to show how the different tools in
the ADVISE system can benefit several differemt types of test organizations. An
overview of the ADVISE hardware and software components and a description of
the key ADVISE technology areas are followed by specific examples of applying the
ADVISE system in various test contexts.

1. Introduction

The ADVISE system advances the state of the art in avionics data analysis and scientific
visualization through several key technology areas:

Multi-Media Displays

A Data Analysis Expert System
Data Sonification

Storage Management
Hypertext User Manuals

e @ o @ o

In order to support and demonstrate each of these key technology areas, the ADVISE system
integrates several leading edge hardware and software components into a cohesive environment
for advanced avionics data analysis and scientific visualization. The ADVISE hardware platform
is a high performance Digital Alpha workstation in a rack-mount, transportable enclosure. The
software tools include:

Oracle database and the ADVISE-enhanced EVADE system
Visual Numerics PV-Wave data analysis software

Archived Data Reduction System (ADRS)
Internet-compatible hypertext browser

NASA CLIPS expert system shell

® © @ e ®©
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After presenting a description of the key technology areas and the supporting hardware and
software components that comprise the ADVISE system, this paper discusses how the resulting
system can be applied in different test environments, including:

o Avionics software support facilities,

o Developmental Test and Evaluation (DT&E) facilities,
o  Operational Test and Evaluation (OT&E) facilities,

o Radar test facilities, and

o Air-to-air and air-to-ground missile test facilities.

The facility descriptions are inteniicnally generic, but may be easily customized to fit specific
facility requirements.

a0 VINEEE P malla ~ 0 o o
2. Key ADVISE Technology Areas
The ADVISE system advances data analysis and visualization technologies in several directions.
These advances include multi-media displays, & data analysis expert system, data sonification,
storage management, and hypertext user manuals. Each of these technology advances are
described in the following paragraphs.

2.1.1 Multi-Media Displays

ADVISE multi-media displays consist of digitized video sequences that are played back in
concert with other signal analysis displays. The ADVISE system includes a video digitizer to
input and store any number of video sequences. The user synchronizes video displays with
signal displays by identifying one or more key frames in the video and assigning a time code to
the selected frame(s). The ADVISE system can then interpolate and extrapolate time codes for
all other frames in the video sequence. After establishing frame times, the test engineer can
select any video sequence and any number of traditional data displays (e.g. strip charts, 3-D
animations, etc.) and the ADVISE system will play synchronized displays of video with the
traditional analysis displays. The analyst can control the playback using digital analogs of
standard Video Cassette Recorder (VCR) buttons, including Play, Pause, Stop, Fast Forward, and
Rewind. These buttons control the sequencing and playback of the video stream, and the
corresponding analysis displays are updated at the corresponding rates. The user can also
identify a specific data variable/time and ADVISE will display (or play back) the corresponding
video frame(s).

2.1.2 Data Analysis Expert System
The ADVISE data analysis expert system performs two primary functions. First, it analyzes
avionics data to identify key events in the data. Second, the expert system knows the relationship
between data sources and analysis/visualization techniques and can use this knowledge to
recommend appropriate analysis and visualization techniques to the user based on the signals this
user is currently loading into the system.

Key events can consist of problems or anomalies detected in an avionics data siream (e.g. lost
track), unusual evenis that may be of interest to an analyst (e.g. weapons launch), and specific
time “hacks”. The ADVISE expert system detects these events, logs them in the ADVISE
database, and notifies the user of any events contained in a signal stream being analyzed. The
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logic for detecting anomalous and unusual events is based on the Multi-Source Interface
Controller (MUSIC) system, a sister project to ADVISE that is also funded by WL/AAAF-2.

The ADVISE data analysis expert system is also familiar with the inter-relationships between
various data elements in an avionics data stream and can recommend data analysis functions and
data visualizations appropriate for these signals. The ADVISE expert system also recommends
data sources to access based on up to three other signals recently accessed by an analyst.

2.1.3 Data Sonification

Sonification is the conversion of a generic signal into sound. A visual display can be enhanced
by using the analyst’s sense of hearing to relate additional information. For example, unusual
events may be indicated by sounding a particular tone. This process can be extended further by
mapping a continuously changing signal value into a corresponding sequence of sounds. A good
example of this technique is the missile “tone” that is generated by the IR seeker in an AIM-9 air-
to-air missile. This tone, fed back to the earphones of the pilot, provides instant feedback on the
strength of the signal being generated by the seeker. This in turn gives the pilot the information
he needs to know whether or not he is tracking a target with sufficient strength to warrant a
missile launch. Using sound to relate this information prevents the pilot from having to take his
eyes off the out-of-the-cockpit environment to read a dial, thus minimizing distractions at a
critical point in a mission. ADVISE employs a similar approach to enable software support
engineers to assimilate more information about a system being analyzed without being overly
distracted with having to synchronize multiple visual displays. This is primarily an adjunct to
visual displays, rather than a replacement for them, and can be used to add a significant measure
of understandability to many scientific visualizations.

2.1.4 Storage Management

The ADVISE database stores the names and locations (tape ID and record indices) of all data
files collected during a test. This information can be reported to the user to enable him to locate
data from a particular test, and may also be queried by the data reduction tool to automatically
load the appropriate tape if it is currently available in the ADVISE tape jukebox.

The ADVISE system also stores key signal information in an on-line database. It is not
reasonable to store all signal data in a comprehensive database (there is simply too much data for
this approach to work). However, a small subset of all collected data often holds the most
important information content. This is the information ADVISE attempts to capture and store in
the database. As mentioned in the expert system section, ADVISE contains an intelligent agent
to identify and extract key events in an avionics data stream. These events are then recorded in
the ADVISE database. Meanwhile, conventional magnetic disk and high capacity tape jukeboxes
provide cost effective storage of the large volumes of complete signal data collected in a typical
avionics test. The event indices that are stored in the ADVISE database provide the key
information needed to locate and extract signals of interest.

Finally, the ADVISE database holds environmental data that describes where, when, and what
equipment/personnel participated in a particular test. In fact, the ADVISE database is an
outgrowth of the ECM Vulnerability Assessment Data Encyclopedia (EVADE) which was
produced by Georgia Tech for WL/AARM. The EVADE database cataloged this environmental
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data, but did not include the enhancements added by the ADVISE system to store key data
extracts and the names and locations of all data files associated with a test.

2.1.5 Hypertext User Manuals

Most avionics software support facilities rely on relatively voluminous sets of documentation for
a system under test. This documentation is often difficult to use because there is so much of it,
and because the cross indices relating various parts of the documentation are incomplete or non-
existent. In addition, a transportable data analysis environment is often hampered by a lack of
sufficient documentation.

The ADVISE system remedies this situation by supporting on-line hypertext documents. After
information from a conventional document is scanned, optical character recognition (OCR) is
peformed on the scanned image to recapture the original ASCII characters, and the text is then
integrated with scanned figures and tables to produce an equivalent on-line version of the
manual. ADVISE hypertext documents are coded in the Hyper-Text Markup Language (HTML)
that has become the standard for publishing information on the internet’s world-wide web. This
standard supports all the features required to create an on-line document, and has the added
feature of compatibility with web servers that would enable any number of engineers in a facility
(or anywhere in the world for that matier) to access a single, configuration-controlled version of
a document or user manual.

On-line user manuals supported by the ADVISE system improve analyst efficiency by making
the information instantly accessible at the engineer’s terminal. The engineer can also easily
create on-line book marks that he can return to with a simple mouse click. In addition, many
web browsers permit individual users to add annotations to any on-line document. These
annotations are then displayed whenever the engineer returns to the particular page in the
manual. This is analogous to the user writing notes in the margin of a paper document.

On-line documentation is especially beneficial to novice users. The hypertext links enable these
new users to immediately jump to the definition of an unfamiliar acronym or term, for example,
and then easily return to the original context. Other links can instantly transport the user to a
reference providing additional information on a topic. Although hypertext technology is now
commonly available (as witnessed by the explosive growth of the world-wide web), the ADVISE
system represents one of the first applications of this technology to an avionics analysis and
visualization environment.

3. ADVISE Tools

The ADVISE system consists of several different hardware and software tools integrated into a
single, cohesive environment. The hardware tools provide a state-of-the-art, high-performance
platform on which to execute the software that gives ADVISE its fully integrated, user-friendly

capabilities.

3.1 ADVISE Hardware

The ADVISE hardware includes a high performance, state-of-the art engineering workstation, a
3-dimensional graphics display subsystem, 4 GB of on-line disk and over 40 GB of near-line
(jukebox) digital tape in a hierarchical storage management system, a MIDI audio system to
support the sonification of signal data, and an ethernet Local Area Network (LAN).
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3.1.1 Engineering Workstation

The ADVISE workstation is a DEC Alpha 3000 model 900, currently the fastest deskside
workstation in the industry.  This workstation is powered by a 64-bit, 275 MHz Alpha AXP
RISC processor and performs 189 SPECint92 and 264 SPEC{p92. It is based on a TurboChannel
system bus operating at 100 MB/sec, and is mounted in a rack-mount enclosure for
transportability in WL/AAAF-2’s Mobile ECS Readiness Research Facility (MERRF) vans.

3.1.2 Display Subsystem

A 3D graphics display card and 21” color monitor provide the ADVISE system with the high
performance graphics required to display real-time scientific visualizations. The ADVISE
display card is a DEC ZLX-M2, 24-plane Z-buffered system capable of producing smooth-
shaded, 3D graphics, anti-aliased lines, texture mapping, and true stereoscopic viewing with
appropriate eyewear. This graphics system performs at the rate of 1.4 million 3D vectors per
second and 295,000 smooth-shaded triangles per second. The ADVISE display subsystem also
incorporates a full-rate video frame grabber to digitize and play back video data for multi-media
displays.

3.1.3 Hierarchical Storage Subsystem

The ADVISE storage subsystem consists of 4 GB of traditional winchester hard disk along with
over 40 GB of tape storage in a jukebox configuration. Avionics data can be read directly from
the tape subsystem or it may be cached to the hard disk for more responsive analysis and
visualization. This hierarchy provides ample storage for the raw avionics data streams and for
reduced datasets used in typical analysis and visualization operations.

3.1.4 Audio Subsystem
The ADVISE audio system is a Roland SS-55 MKII Sound Canvas MIDI synthesizer containing
128 ROM-based voices, each representing a different orchestral instrument. The synthesizer is
controlled by a program running on the ADVISE workstation; the user can assign any desired
instrument to a signal and control

how the sound attributes change as
the corresponding signal changes.

3.1.5 Local Area Network

The ADVISE workstation supports
a connection to an ethernet LAN.
This network is used to transfer
files to other systems on the
network, provide a backbone for
electronic mail, and enable the
ADVISE workstation to share
print services from other machines
on the network.

Each of the ADVISE hardware
components are rack-mounted for
easy transportability in the
WL/AAAF MERREF van, as shown
in Figure 1.
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3.2 ADVISE Software

The primary ADVISE software components include a DataBase Management System (DBMS), a
data reduction tool, data analysis and visualization tools, an expert system shell, and a hypertext
development system. Each of these software components are pictured in Figure 2, and described
below.
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Figure 2 ADVISE Software Dataflow Diagram

3.2.1 Oracle DBMS and the ADVISE-Enhanced EVADE System

The ADVISE database is an extension of the ECM Vulnerability Assessment Data Encyclopedia
(EVADE) and is supported by an Oracle DataBase Management System (DBMS). The EVADE
database catalogues environmental date about a test, recording such things as where the test took
place, who participated in the test, and what general types of information were collected during
the test. The ADVISE enhancements to the EVADE system add the capability of storing key
extracts from avionics data streams directly in the database along with pointers to the data files
containing the full data stream.

3.2.2 Archived Data Reduction System (ADRS)

Before a test or support engineer can effectively analyze a set of avionics data, he must first
extract the signals of interest from 2 typically complicated and convoluted data stream. Signals
are difficult to extract from avionics data streams because the avionics system developers are
forced to compact a tremendous amount of information into a relatively small bandwidth
communications channel. The signals reported on the communications buses also vary with
every operating mode of the system, further complicating the task of extracting signals of interest
from the data stream.
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The ADRS is a data dictionary-based data reduction package that helps alleviate many of the
difficulties in accessing data from an avionics data stream. The first step in using the ADRS is to
populate the data dictionary. This dictionary defines the format and location of every variable of
interest in a data stream. Typically, a single engineer who is familiar with the formatting of data
in the data stream uses the ADRS Graphical User Interface (GUI) to enter this format and
location information into the data dictionary. Then, all other engineers use a GUI to request any
set of signals from the list of signals in the data dictionary, along with a start and stop time. The
ADRS software then satisfies these requests by extracting the desired information from a data
stream using the data dictionary information previously defined. Each signal is written to a
separate data file in a standard External Data Representation (XDR) format for easy
transportability between different hardware systems and various analysis software packages.

3.2.3 Precision Visuals PV-Wave Data Analysis Software

For the primary ADVISE data analysis and visualization package, we selected Visual Numerics’
PV-Wave, the premier data analysis and visualization package available as a commercial off-the-
shelf product. This package provides the ADVISE system with a comprehensive set of analysis
functions, a user-friendly interface, and numerous display options. However, one drawback of
the PV-Wave software is that it performs its own display coordinate transformations and uses X-
windows draw commands for all display operations. This approach ignores the very high
performance graphics engine available on the ADVISE workstation and performs all the
compute-intensive display calculations on the host CPU, a much less capable processor for this
particular application. Thus, in order to support real-time 3D animation displays, ADVISE
supplements PV-Wave with a directly callable library of Open3D graphics routines. This
combined approach to satisfying ADVISE display requirements relies on the user-friendly PV-
Wave package for most displays and provides an Application Programming Interface (API) for
the more complex, compute-intensive display functions.

3.2.4 NASA CLIPS Expert System

As mentioned in the key technology discussion above, ADVISE includes an expert system. This
expert system advises an analyst on specific data analysis and visualization operations to
perform, recommends signals to evaluate, and notifies the user about key or anomalous events it
detects in a data stream. The ADVISE expert system shell is the NASA C-Language Inference
Processing System (CLIPS). The CLIPS shell holds the required expert system rules in a rule
base and uses a forward-chaining inference engine to extract knowledge from these rules based
on how the user interacts with the rest of the system. For example, the ADVISE expert system
primarily monitors the user’s interaction with the ADVISE data reduction tool. As the user
extracts signals from the avionics data stream, the ADRS software reports this information to the
expert system. These inputs then trigger a flurry of activity in which the expert system makes
recommendations to the user of other related signals to extract or specific data analysis and
visualization techniques to apply. The expert system also queries the ADVISE database to
determine if any key events or anomalies were detected in the signal(s) currently being extracted
from the data stream. If they were, this information is also reported to the user.

3.2.5 Internet-Compatible Hypertext Tool

As mentioned in the key technology section, the ADVISE software tool set includes an internet-
compatible web browser. This web browser enables a user to access and manipulate hypertext
documents coded in the HTML format. In addition, if the ADVISE LAN is connected to the
internet, then this tool can also be used to directly access over 2.5 million “pages” of hypertext
documents stored on web servers throughout the free world.
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4. Test Environments and Generic Test Organizations

Various aspects of the ADVISE system are applicable to many different types of test
environments and generic test organizations. The following sections highlight how some of
these key technologies can be applied to them.

4.1 Avionfcs Software Support Facilities

The mission of an avionics software support facility is to maintain and enhance the software in
an avionics system. A maintenance problem (defect) must first be re-created from a problem
report. The software support engineer must then understand the cause of the problem. After a
correction is made the results must be checked to verify that the system still works properly.
Software support facilities are also tasked to upgrade avionics systems with additional advanced
capabilities. In this case, the goal is to add new features and verify they work as planned while
not interfering with previous capabilities.

The ADVISE system would benefit software support engineers in several areas. First, in a
maintenance context the ADVISE tools can help an engineer verify that he has indeed recreated a
problem. This is often no trivial task with traditional data analysis systems. The data reduction
tool makes it much easier for support engineers to extract the data of interest without the long
lead times required when working with traditional data reduction support organizations that are
often located in batch-oriented computer centers. The scientific visualizations forming an
integral part of ADVISE enable support engineers to visualize the operation of a weapon system
in such a way that problem areas often become more evident than they would with the traditional
data printouts. In addition, the ADVISE expert system can be taught to look for a particular
event signifying the existance of the problem of interest, and the expert system can then “tell” the
analyst whether or not the problem exists in a data set without the support engineer having to do
any significant data analysis at all. Finally, the on-line hypertext user manuals make it easy for
software support engineers to understand the operation of their systems and find specific
information related to solving the current maintenance problem.

In the enhancement mode of operations, software support engineers can use the ADVISE
system’s extensive analysis and visualization capabilities to evaluate the impact of any change to
the avionics software load. Key data from many different tests can be stored in the ADVISE
database, where it is available for performing searches. For example, software support facilities
can search the database to see where operational test units are firing most missile shots and
determine what part of the launch envelope they should emphasize improving. This data can also
be collected from operational excercises and live engagements, such as Operation Desert Storm,
and loaded into the ADVISE database, where it is then available for querying. The internal
timelines of avionics processes can also be monitored using ADVISE visualization utilities, and
expert system rules can be entered to automatically notify software support engineers when
busted timelines are detected.

4.2 Developmental Test and Evaluation (DT&E)

The mission of DT&E organizations is to validate that maintenance updates and avionics
enhancements perform as advertised before systems are released to the operational commands.
The ADVISE database provides a wealth of information on problems that may have been
encountered in previous versions of an avionics system. This information can help target a test
plan to excercise the system in areas which were problematic in the past, and thus stress the
system to the maximum extent in the shortest period of time.
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ADVISE multi-media displays can record details on each test and synchronize the playback of
this video with actual signal data collected in a test. This capability can help DT&E
organizations locate the source of any problems that may exist in a new avionics tape. Similarly,
the ADVISE expert system can notify the DT&E engineers if any anomalies relating to known
problems in the data collected from a test. This can save an analyst many hours of sifting
through reams of test data searching for the anomalies manually, as is often the case today. Data
sonification and scientific visualization capabilities in the ADVISE system can work together to
audibly notify DT&E engineers when specific events occur in a datastream they are currently
visualizing. Validity conditions can also be sonified so that an engineer knows whether a signal
he is visualizing on a particular display is valid at any point in time. These tools all help the
engineer better understand the data he is tasked with analyzing, and thus make him more efficient
in finding problems or in convincing himself that everything is indeed working as expected.

4.3 Operational Test and Evaluation (OT&E)

The mission of an operational test and evaluation facility is to validate that an avionics system
works as advertised throughout the life cycle of the system. Fielded units are taken directly off
the line and brought into a facility for testing. The tests can include flight tests and live missile
launches. Data collected in these tests verify whether or not the systems still work after being
stored in active units. Many times, the entire weapon system (including aircraft, missile, flight
crew, and even the maintenance team) is evaluated in the process. Two examples of OT&E
facilites are provided below: Radar Test Facilities and Missile Test Facilities.

4.3.1 Radar Test Facilities

Radar systems comprise some of the most technologically challenging avionics in a modern
aircraft or missile. These systems produce a large quanitity of data on several different high
speed buses. For example, the Westinghouse APG-68 radar in an Air Force F-16 fighter
produces several megabytes per second of data on a combination of four distinct buses. It is thus
difficult to verify whether or not a system is operating correctly from the low level of detail
available on these buses. Unfortunately, improper operation sometimes does not show up on the
summary displays provided to the pilot or the test engineer. In these cases, the avionics analyst
must look at the detailed bus activity to identify improper operating conditions.

The ADVISE system can support the radar engineer in several ways. For example, the storage
management features in ADVISE can store complete data sets for detailed analysis while
highlighting key extracts in the ADVISE database. The ADVISE expert system can look for
specific anomalies that are also recorded in the database. These features can help an analyst
locate problem areas in the radar. The ADVISE database is also a storehouse for archiving test
conditions that resulted in improper operation on previous versions of an avionics software load,
and the hierarchical storage system provides access to the complete data sets collected during
these problem tests. ADVISE thus provides excellent examples for regression testing the radar
avionics.

The data analysis and visualization capabilities that form the heart of the ADVISE system are
invaluable tools in understanding the operation of a complicated radar system. For example, a 3-
dimensional animation of a range doppler display can provide dramatic visual evidence of a radar
that does not properly counter various types of electronic counter measures. Of course, this tool
can also be used to validate the proper operation of the radar in these circumstances.




The ADVISE data reduction tool is especially powerful when it comes to extracting data from a
radar bus. The radar buses, more than any other buses in a modern aircraft, contain tightly
compacted highly cryptic codes for various signals and flags reported by the various radar Line
Replacable Units (LRUs). These buses are difficult to reduce to single-unit files in standard
engineering unit formats. However, the ADVISE system includes a powerful data reduction tool
that enables an experienced analyst to enter descriptions of each desired data element into a data
dictionary one time. The ADVISE data reduction tool can then be used by other analysts that
have little or no familiarity with the location and format of a signal in the data stream to extract
these signals from the stream into an easy-to use data file that is compatible with most any
analysis and visualization tool. This capability enables every engineer in the radar test facility to
extract whatever data item he needs by merely knowing the name of the variable. It is no longer
necessary for these engineers to submit batch requests to a centralized data reduction facility to
gain access to signals they are interested in analyzing. Nor do they need to write special-purpose
software to extract their data from the data stream and most engineers are not required to have
the intimate knowledge of format and layout that current engineers must be burdened with. They
can thus spend their valuable time analyzing the data rather than spending their time trying to
find it!

4.3.2 Alr-to-Alr and Alr-to-Ground Missile Test Facilities

OT&E missile test facilities are responsible for verifying that missile seekers, flight control
systems, and warhead fuzing functions all operate correctly in fielded missile systems. Before
launching a missile at one of these facilities, the warhead is typically removed and replaced with
a telemetry (TM) pack. The TM pack interfaces with various signals available within the missile
and transmits this information to a ground station for real-time display and post-mission analysis.

During a typical test, a cockpit camera records the Heads-Up-Display (HUD) and/or the radar
screen as the pilot maneuvers his aircraft into the correct parameters for a missile launch. After
launching the missile, this camera often picks up the exhaust trail from the missile as its rocket
motor powers it toward its target. Communications between the pilot and his wingmen and
ground support personnel are also recorded.

The first task in analyzing a missile test is to determine if the missile performed coirectly. The
ADVISE system can support this analysis by displaying any one of several graphics. For
example, key parameters from the telemetry data stream can be displayed in electronic strip
charts. The ADVISE sonification system can be used to recreate and evaluate the missile tone
the pilot should have heard before launching an AIM-9 missile. Three-dimensional animations
of range-doppler matrices on radar-guided (e.g. AIM-7) missiles can be displayed. Scoring
system data can be displayed and evaluated to determine if the missile closed within a specified
range of the target. Fuzing signals can be displayed in synchronization with these other displays
to determine the end-game parameters at the time the warhead would have detonated (had it not
been removed). The ADVISE data analysis and visualization system can perform all these tasks.

If it is determined that the missile did not perform within established bounds of acceptance, then
the missile test facility personnel must determine the cause of the malfunction. Often, this
process starts with a review of the mission’s cockpit video tape. The ADVISE mult-media
displays support this function by digitizing the video and making any frame instantly available
for viewing. As the video is played, the ADVISE system can synchronize displays of other
signals with the data being displayed in the video, including scrolling strip charts, 2 and 3-D
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animations, and sonification “displays”. This capability enables the analyst to quickly zoom in
on any trouble areas and get a total picture of all the events happening at that point in time.

The ADVISE DBMS and storage management system would enable the analysts to look for
previous tests with similar launch conditions to see if the problem is a recurring one. Once a test
is located using DBMS queries, actual data from the test can be extracted in real-time using data
pointers stored in the database to find the physical location of the tape containing the entire set of
data from the previous test. The desired tape can then be loaded into the near-line storage
system, or accessed directly if it is one of the tapes already stored in the jukebox.

The ADVISE expert system would prove invaluable to an analyst tasked with identifying any
problems that could have caused a missile to fail. The expert system is programmed to
automatically recognize anomalous events and report these events to the analyst. This feature
can save countless hours of analysis by performing a comprehensive look at all aspects of the
test. The analyst may then concentrate on determining which anomalies are expected and which
are likely candidates for contributing to a missile fault. The number of anomalous conditions to
evaluate will typically be much less (probably less than one signal in a few hundred or a
thousand) than the total number of signals recorded in a test, thus saving the analyst a
considerable amount of time.

5. Summary

This paper described the key technology areas the ADVISE system applies and extends in the
area of avionics systems analysis and scientific visualization: multi-media displays, data analysis
expert systems, data sonification, storage management, and hypertext user manuals. The
hardware and software components of the ADVISE system were then described. Finally,
examples were given of how ADVISE may be applied in various test environments and generic
test organizations, including avionics software support facilities, DT&E organizations, and
OT&E organizations (such as radar test facilities and missile test facilities). The ADVISE
system promises to empower avionics analysts with new tools that will make them more efficient
and help them to better understand the systems they are tasked to analyze.
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Abstract

This paper describes the Avionics Data Visualization Integration System Environment (ADVISE)
Archived Data Reduction System (ADRS), an on-going development effort sponsored by WL/AAAF-
2 under the Embedded Computer Systems Readiness (ECSR) contract.

ADVISE provides a powerful computer workstation tailored to meet the needs of avionics test
facilities. It provides a prototype capability for the quick and detailed analysis of avionics data from
independent and integrated sources using advanced data analysis, visualization, and expert system
techniques coupled with state-of-the-art display and workstation hardware. The ADRS is the
component of ADVISE which provides the software and user interfaces necessary to extract data
from archived avionics data sets and present the extracted data in a format useful for data analysis
and visualization.

Introduction

In today’s avionics environment, large quantities of data are collected from various data busses. The
data volume coupled with high data rates often make it necessary to compress the data into single,
packed data streams stored in large data sets. Currently, analysts must research the method in which
the data was packed before it can be extracted. Then, they must write specialized software to read
the data set and extract the data for analysis. The packing and storage methods used often vary
between systems, requiring different data reduction programs for each avionics configuration. To
reduce the costs associated with extracting and analyzing these complex data sets, a system is needed
which enables an analyst to process large quantities of data efficiently and cost effectively without
regard to the method in which the data was packed and stored. The ADVISE ADRS was designed
to meet these requirements.

The ADRS is a cost effective environment for data reduction. The ADRS and its Data Dictionary
provide an analyst with tools that allow the layout of an avionics bus and its associated signals to be
defined once and reused often. The ADRS is written in a manner that allows the user to define
multiple data dictionaries without having to rewrite or change software. All data dictionaries are
immediately available for use. ADRS allows the analyst to convert large quantities of data into
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smaller, more manageable formats which may be used in many state-of-the-art data analysis packages
efficiently and with minimum effort.

As shown in Figure 1, the ADRS has three major components: the User Interface. the Data
Dictionary Manager, and the Visualization and Analysis Bridge (VAB). The User Interface allows
the uscr access to the various functions of the ADRS. The Data Dictionary allows the ADRS user
to create, modify, and store signal

~ definitions in the Data Dictionary.
The VAB allows the ADRS user to —  teore
select signals from the Data Dictionary B P —
for data reduction, visualization, and \’ o Reforonce Mo
analym. The VAB parses the | / reuatacton "’:/57 R
archived data set, extracts the data Do Do '8 5| o b - —
associated with user-selected y N—
variables, and creates Exiernal Data 2N e
Representation  (XDR)  standard 2signat, Data Filo
output data files for each variable. ,
The output data files can then be ) Signalg Bta Fio
loaded into a visualization tool such ag Usor Intorfaeo
PV-Wave for display and analysis. Y | \ ©
This paper provides a detailed Signaly DataFilo
description of each component of the ~TFTIrTTErETET R
ADRS. Figure 1 ADRS Data Flow Diagram

User Interface

The ADRS User Interface allows multiple users with little or no knowledge of the underlying signal
representations or data packing methods to select signals from a large data set for reduction. One
analyst loads the data dictionary and then all users simply select the signals and data set they want to
use. The ADRS User Interface provides a user-friendly, industry standard interface to reduce large

data sets.

The ADRS User Interface provides an integrated environment for accessing and maintaining the Data
Dictionary, selecting signals for data exiraction, and initiating the data reduction. The User Interface
uses code based on OSF/Motif to provide its industry standard, user-friendly environment. It is
comprised of two major components -- the Dictionary Maintenance component and the ADRS

Configuration component.

User Interface - Data Dictionary Maintenance Componemnt

The Data Dictionary Maintenance component of the User Interface provides the user with low level
access to the ADRS Data Dictionary. [t allows the user to add, delete, and update signal definitions,
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as well as to query the Data Dictionary for current signal definitions. Figure 2 shows an example
Data Entry Form for adding a signal to the Data Dictionary.

The ADRS Signal Definition Form provides fields which allow the user to load the signal name
associated with each signal in the dictionary; comments pertinent to the signal currently being
defined; the stream name and sequence number from which the signal is derived; a data type for the
signal; the engineering units associated with the signal; the location of the signal in a data buffer
including its offset into the buffer, its start bit at that location and its length in bits; and the scale

F1ge2 A Signal Definition Form

factor associated with the buffer. Additionally, the ADRS Signal Definition Form allows the user to
define the list of possible values associated with signals that can be enumerated. And finally, the
ADRS Signal Definition Form allows the user to define the array elements for signal types that are
expressed as arrays.
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User Interface - ADRS Configuration Component

The ADRS Configuration component of the User Interface allows the user to enter configuration
parameters necessary to reduce the data set. These configuration items include the name of the data
dictionary, the start and stop times for the data extraction, the signals for which data will be extracted
and output filenames for status and reference information.

When initiating the data reduction process, the ADRS Configuration Form provides a field for the
user to enter the name of the data dictionary. The ADRS software reads the selected dictionary and
extracts all signal names stored in it. The ADRS Signal Selection Form presents the list of signals
to the user in a traversable format that allows each signal to be marked or not marked for extraction
as desired by the user. When the signals of interest have been marked, the user is allowed to store
the signal list for use in later reductions. The list of marked signals is passed to the Visuvalization and
Analysis Bridge where it is used to process the input data file and extract data associated with the
selected signals.

The ADRS Configuration component also allows the user to enter the time interval for which data
will be exiracted. The time fields allow the start interval and stop interval to be specified with
millisecond accuracy. To support total reduction of the data set, the start time interval defaults to
the first start time in the data file while the end time interval is set to the last day, hour, minute, and
second of the year.

Finally, the ADRS Configuration component allows the user to change the default output filenames
that will be used to store status information for the extraction process, time stamp information for
cach data block, and signal cross reference information for all selected signals. These output files are
discussed later.

Data Dictionary Manager

As stated previously, in current avionics environments users must know low-level implementation
details concerning the data set they want to reduce. With ADRS, only one analyst is required to load
specific details about the location and types of signals in a data set. This information is then stored
in the ADRS Data Dictionary where it can be retrieved by any user with ease. By accessing the data
dictionary, any user gains immediate access to all variables in the data set without having to know
intimate details about the underlying representation and stream location of the data. Also, once the
data dictionary has been loaded, no additional code needs to be written to access the data set. The
ADRS provides a standard interface to all ADRS data dictionaries. Any analyst using it is able to
reduce a data set without a priori knowledge of the packing and storing methods used for the data

set.

The ADRS Data Dictionary Manager provides the low level software maintenance functions for
creating the ADRS Data Dictionary. With it, the user can add, delete, and modify dictionary entries.
It also provides low level query functions for retrieving stored dictionary entries. .
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Signal Definition

As discussed previously, the Data Dictionary contains a complete list of signals defined for a system.
For the ADRS, a signal is any data element stored in an archived avionics data set. Since multiple
signals may be packed into a single word, the ADRS allows the user to specify the start bit and bit
length for a signal. Additionally, by using its conditional test capability with its and/or chaining
support, the ADRS allows signals to be defined based on the presence and value of other signals in
the current data block. Up to 256 levels of and/or chaining in a signal definition is supported by the
ADRS Data Dictionary.

The ADRS makes it easy to define signals that may have a limited range of possible values. These
enumerated types have a separate definition facility which makes the enumeration type visible to all
signals being defined in the dictionary. Therefore, the user is required to enter the definition once,
and then it is available for reuse as often as is required. These enumeration types, once defined, are
automatically visible to all other signals in a dictionary. Enumerated types are further discussed in
a later section.

Finally, the ADRS has a mechanism which allows arrays to be defined. As with enumerated types,
once an array type is defined, it becomes immediately available for use by other signals which may
have a similar array definition.

Conditional Test Entry

In a many avionics systems, signal location definitions are not constant. Their location and value
depend on other signals being present in the buffer. For example, the target signal to noise ratio
signal appears only in PSP data busses when the mode is Track TM1 Short. Therefore, a conditional
test must be applied to the signal definition. The ADRS solves this problem with the Conditional Test
Form.

The Conditional Test Entry Form allows the user to develop simple conditional tests which can be
applied to determine the presence of a signal in a data buffer. These conditional tests include the
comparative functions <, >, =, and /=; the logical functions * and +; and the boolean functions true
and false. Figure 3 shows the Conditional Test Entry Form.

The form allows the user to enter the name of the condition test, comments specific to the condition,
and the condition itself. The left and right push buttons are context sensitive to the condition. The
buttons allow the user access to previously defined conditions as well as constants and enumerated
types. This allows the user to build complicated tests from previously defined building blocks.
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Figure 3 ADRS Conditional Test Entry Form

And/Or Chaining Support

And/or chaining support allows complex conditional statements to be applied to a signal definition.
This functionality allows several conditional tests to be combined when defining a signal. The ADRS
supports up to 256 levels of and/or chaining in a signal definition. When defining a chain, the data
dictionary adminisirator creates a condition variable for each element of the chain. For example, the
chain (A*B)+(C*D) would require three conditional variables to be entered into the dictionary: V1
= A*B, V2 = C*D, and V3 = V1+V2. This mechanism allows maximum flexibility and reuse of data
dictionary entries since each component of the chain is separately stored in the data dictionary.
Therefore, all and-conditions and or-conditions may be reused by other and/or chains in the
dictionary. Also note, the individual conditions of the chain may themselves be complex statements.
In the example above, condition A may have been previously entered into the dictionary as a simple
statement like VarA < Constant or it may be a series of complex and/or conditions. By using this
method, ADRS ensures that a variable may be completely defined with minimum effort.

Enumeration Types

The ADRS has built in facilities to aid the user when defining variables which have more commonly
known values. For example, a typical avionics system may have modes Range While Search, Track
TM1 Short, and Track While Scan. Rather than referring to these modes by their numerical
representations, the ADRS allows these mode names and their values to be defined in 2 common
variable called Mode. Then the more common name may be used in the definitions.

Signals which have a finite range of possible values are defined using enumerated types. Since more
than one signal may share the enumeration, the ADRS Data Dictionary allows an enumerated type
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to be defined separately. Signals can then use the type by referencing the enumerated type's definition
in the Code List field of the ADRS Signal Definition Form (see Figure 2).

The ADRS Enumerated Type Entry Form, shown in Figure 4, is used to define enumerated types.
This Form allows the user to enter the name of the enumerated type as well as the name and value
of each element of the signal. For example, an enumerated signal Mode_Type may be defined to have
the modes Range While Search, Track TM1 Short, and Track While Search with corresponding
values 8, 18, and 22.

Figure 4 ADRS Enumerated Type Entry Form
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Array Support

The ADRS Array Definition Form is used to define array signals. The form allows the user to specify
the size, elements, and element locations of array signals. Arrays of signals can be stored in the
dictionary and referenced by other signals whose clements are similar to the array definition.

Visualization and Analysis Bridge (VAB)

The ADRS Visualization and Analysis Bridge provides the functionality necessary to extract data
from the archived mission data set. After selecting the signals for extraction, the VAB is called with
the signal list, the time intcrval, and the data set. To kecp cach reduction run scparate, the VAB
creates a directory based on the time interval to store the reduced data sets. The VAB opens the data
filc and parses the requested data set, extracting the data for cach user-selected signal. The extracted
data is stored in 2 data file whose name matches the signal name. To maximize compatibility and
portability, the data in the ADRS output files are stored in XDR format.

The ADRS VAB creates other files to assist the user in reading the output data files. These include
the Log File, the Reference File, and the Time Stamp file.

Visualization and Analysis Bridge Log File

The ADRS creates a log file which contains information about the extraction process. The definition
for each signal selected is logged to the file as are the output filenames, the fist of extracted signals,
and all error messages that were displayed during the extraction process. The log file also contains
status messages indicating the progress of the reduction. The log files are numbered sequentially and
appear in the local directory. The log file's default filename is Extract_Archived_Data.Log.# where
the # represents the number assigned to the current log file. However, this name may be changed by
the user in the initialization process.

Visualization and Analysis Bridge Reference File

The reference file is a text file which contains significant information about each signal extracted. It
is created to aid the visualization tool to bridge the data file and the Time Stamp file. It contains the

following information:
Signal Name:  The signal name.
Data Type: The XDR equivalent data type of the signal's data.
Time Filename: Filename for the file containing the time stamps for each buffer of data.

Buffer Size: The number of data samples for the signal in each buffer.

Sample Rate:  The rate at which the data samples were created.
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Scale: Currently unused and set to 1.0.
Offset: Currently unused and set to 0.
Visualization and Analysis Bridge Time Stamp File

The data set contains a time stamp for each buffer of data. This time stamp is extracted from the
buffer and stored in an output file named Time_Stream_Name where Stream_Name is replaced with
the name of each stream in the data set. One time stamp file is created for each stream. The data in
the file is recorded from the time stored in the header of each data buffer. Information in the
reference file is used to interpret these times when reconstructing the data and its time line.

Visualization and Analysis Bridge Signal OQutput File

The ADRS creates one output data file for each signal selected for extraction. The extraction files
are located in a local directory whose name is created from the user-selected start time. The data files
are stored in this directory with names matching the signal name. All data in the output files are in
External Data Representation (XDR) format. This standard allows maximum system portability of
the data. The output data files, the time stamp file, and the reference file allow the analyst to easily
import the reduced data set into analysis and visualization tools.

Summary

This paper has described the ADVISE Archived Data Reduction System. The ADRS is a very
flexible, and easily extended avionics data reduction tool set which aids the analyst in reducing large
quantities of interleaved data into smaller, non-interleaved data sets. These smaller data sets are ideal
candidates for advanced visualization and analysis. The ADRS outputs all data in XDR format
thereby ensuring the portability of the data. Its Motif-based User Interface ensures its standardization
and ease of use. The novel methods used to create and maintain the ADRS Data Dictionary also add
to its ease of maintenance and make the ADRS a valuable tool for analysts inside and outside the
avionics arena.
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ABSTRACT

The U.S. Army Combat Systems Test Activity (CSTA)
currently examines ballistic chamber pressure data records for
validity of transducer installation and functioning. These
examinations occur on-site immediately after acquisition. Real-time
decisions are then made regarding whether or not testing should
proceed or whether transducer problems require correction. The
quality of the decision currently depends upon the knowledge and
experience of the test technician operating the data acquisition
system. Access to an expert may be required to ensure correct
decisions are consistently made for high priority or problematic
tests. CSTA has undertaken a project by which the chamber
pressure data records are verificed automatically, in real time as the
data are collected. A layered, feedforward neural network has been
developed to model the pressure response of live-fire testing. The
network is rapidly trained in real time using conjugate-gradient
descent. Parameters from the trained network are used to perform a
preliminary analysis of the data. The network is retrained four
additional times on smaller time intervals to support more detailed
analyses relevant to known chamber pressure processes. These
analyses are implemented on derived data sets formed from the
residuals of the neural-network model and the pressure-chamber
data. The process has been shown to be effective for detecting
electrical connection faults, blowby, and ringing. It is currently be
implemented as part of the live-fire data-collection software system.

1. INTRODUCTION

The U. S. Army Combat Systems Test Activity (CSTA) has a need to evaluate ballistic chamber
pressure data records on-site as weapons testing is being conducted. Measurements of the weapon
chamber pressure during firing is critical for determining both the safety and combat effectiveness
of a weapon. The CSTA currently relies upon expert diagnostic personnel to be present or on-call
during ballistic weapons testing operations. An automated system that effectively subsumes this
human expertise will free these personnel for other tasks, allow CSTA to schedule weapons testing
independently of the schedules of these expert personnel, and save money.

Weapon chamber pressure is measured after a set of electrical pressure transducers is placed in

various positions of the gun tube. Accurate chamber pressure measurements depend upon the
installation of the individual transducers, proper operation of the transducers, proper electrical
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connections, and proper signal handling. The collected data for a single transducer during a firing
test yields a profile of the chamber pressure as a function of time. This trace is called a P-T curve.
Data are typically collected at a rate of 200 KHz ( 20,000 data points in a 100 millisecond interval).
If a transducer is properly installed and functioning, the measured P-T curve is relatively smooth
and shows a rapid rise in chamber pressure with a somewhat slower fall-off. A typical P-T trace 18
shown in Figure 1.
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Figure 1 - A typical, normal P-T trace. Time is measured in
milliseconds, pressure is measured in megaPascals.

Deviations from this general profile are used to diagnose problems in the installation or functioning
of individual iransducers. Such problems in general are classified as improper grounding, electrical
drift (lack of insulation), blockage, resonance or ringing, baseline offset, blowby, thermal transient
effects, and discontinuous electrical connections. Each classification can be associated with a
corrective action to be applied before further weapons testing is resumed.

Connector faults arise when an electrical connection is not securely made so that the resulting
circuit is only made intermittently during ballistic chamber pressure (BCP) testing. As shown in
Figure 2, the resulting P-T curve is characterized by a general blockiness and often a failure of the
pressure measurement to return to 0 megaPascals.

Blowby occurs when the mounted transducer has a leaky seal resulting in escaping gas. Note that
the curve shown if Figure 3 shows no abnormalities. However, Figure 4, which is the same data
viewed at a different scale shows a characteristic deformation in the top portion of the P-T curve.
This shows that an enlarged scale is required to notice the irregularity. We refer to this change of
scale as focus of attention or FOA. A major thrust of this effort describes how the FOA can be
defined and manipulated by an automated system.

The phenomenon of ringing occurs when a resonance occurs within the volume around the
transducer. Transducers are not mounted flush with the interior wall of the gun barrel; this space is
packed with an incompressible grease. If not enough grease is used, an organ-pipe effect may
result with resonant frequency of approximately 12 KHz. As shown in Figure 5, it is characterized
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by a high frequency response in the fall-off portion of the P-T curve. As with blowby, human
operators often require a data presentation at a diffferent scaling to observe ringing artifacts.
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Figure 2 - An example of a P-T data trace resuiting from a faulty
electrical connector. Note the jump discontinuities and the failure
of the pressure values to return to 0 MPa.

150

100§

0 20 40 60 80 100

~50

Figure 3 - An example of blowby. Note that it is not possible to
detect the defect in the top of the curve at this scaling.
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Figure 4 - Enlargement showing the blowby artifact. The only
characteristic of blowby displayed by the P-T trace is the “cleft” in
the uppermost portion of the graph.
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Figure 5 - Ringing artifact displyed on an enlarged scale. Ringing
appears as a resonance beginning slightly before the pressure
maximum and damping out after approximately 3 milliseconds.
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2.  EMBEDDING A MODEL IN A NEURAL NETWORK

A human expert classifies P-T curve anomalies by comparing the data derived P-T curve with an
expectation of an idealized or general P-T curve model. While a human handles this cognitive task
with ease, an automated Al-based system must match an internal general representation to the test
data. This is a registration problem. The idealized model must be shifted and elastically deformed
s0 as to match the data as closely as possible. This task is equivalent to selecting values of
morphological parameters to remap the general P-T model. For example, suppose the function p =
f(?) describes a general P-T curve where ¢ is measured in milliseconds and p is measured in mega-
Pascals. This model may be modified with four fundamental transformations. These
transformations are vertical translation (pressure offset component), vertical scaling (amplitude),
horizontal (temporal) translation (time of onset), and horizontal (temporal) scaling (or weapons
system response). Thus, if fis a model of the general pressure-time response, a particular data set
can be modeled by the following equation:

P = po + Af{a(t-tg)) (1)

The parameter #p denotes a temporal translation and has units of milliseconds, @ denotes a temporal
scaling (contraction or dilation) and is unitless, A denotes an amplitude scaling and is unitless (as f
has units of megaPascals), and po denotes a vertical translation and has units of megaPascals. The
parameters @ and #o are “interior” to the function f, and thus their determination is a problem in
nonlinear regression. Preprocessing can be used to derive initial values of the parameters. For
example, the location of the maximum chamber pressure can be used to estimate A and #. The
3 dB falloff points can be used to estimate @. Assuming that f is differentiable, the technique of
gradient descent can be used to fine-tune the estimated values of the model parameters.

A layered, feed-forward neural network can be used to embed the P-T curve model. The model
parameters are represented as network weights and the nodal transfer functions implement the P-T
model. Such a network is shown in Figure 6. A gradient descent technique (such as back-error
propagation or conjugate gradient descent) may be used to fine-tune the parameter values. This
geometrically-based implementation has a distinct maintenance benefit: if the general P-T model
changes or evolves with experience, then modifying the registration portion of the anomaly
detector reduces to updating the feedforward network topology and (possibly) redesigning the
initial parameter estimation techniques. The gradient descent algorithm need not be modified for the
revised model.

Figure 6 - A neural network representation of
Equation 1. Explanations for the icons are given
in the text.

The icons in Figure 6 represent nodes with specific transfer functions. Circles represent neurons
that accept input values. The transfer function of the neurons with the linear “slash” is the identity
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function g(x) = x. The transfer function of the neuron labeled fis the generic P-T model. Triangles
represent neurons that accept no inputs but continuously output a constant bias value; each such
neuron is labeled with that value. The connections between neurons are weighted. The output of a
neuron is multiplied by a connection weight before being input to the next neuron. Neurons with
multiple inputs sum the weighed outputs of the “upsiream” neurons to compute a net input. This
value is then modified by the neuron transfer function and is passed “downstream” to other
neurons, oOr as an exogenous output value.

3. THE EMBEDDED PRESSURE-TIME MODEL

We found that the gross characteristics of a P-T sample can be effectively modeled by fitting the
data with 2 generic model that is the difference of two sigmoid (or logistic) functions. The model
used is given by

[+ expl-an(r1) 1+ exp(-aoifi-13)

p{1)=po+

This model has three components, an initial
pressure value pg, a sigmoid to model the initial
rise of the P-T curve, and a sigmoid to model the
fall-off portion of the P-T curve. A graph of a
single logistic sigmoid is shown in Figure 7.

p= A
1 + exp(-0(t-t,))

t
4@33.

The two sets of parameters, Ay, @y, £, and Ay, ﬂ
5, and f, serve the same role (and have the same

unit values) as their similarly named counterparts Figure 7 - A generalized sigmoid
described in Equation 1. The ¢ parameter function produced from a modified
translates a sigmoid, the @; parameter controls the  |ogistic function..

temporal scaling (or pitch) of the sigmoid, and the

Aj denotes the amplitude scaling - in this case, the

right horizontal asymptote of the sigmoid.

The neural network we employ is built
from two subnetworks each of which
represent a generalized logistic function
shown in Figure 8. The generalized
logistic subnetwork is shown in
Figure 9. The final network used to
generate each registration is shown in

Figure 10. The parameters A, @, and

11 are represented by the first logistic Figure 8 - A generalized logistic subnetwork

subnetwork and the parameters Az, W2, at implements the function shown in Figure 8.
and t are represented by the second

logistic subnetwork. The parameter pg
is combined with the outputs of the logistic subnetworks to produce the P-T model value.

The seven model parameters, po, A1, @1, £, Ay, @, and b, represented by neural network

connection weights, are tuned through the method of conjugate gradient descent. It was hypothe-
sized that this modcl would account for at Icast 90% of the variance of a normal P-T data set when
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measured on the interval [0 ms, 100 ms] at a sampling rate of 100 Hz, or 1/200th the maximum
data ratc. This is a reduced data set consisting of 100 P-T points.

Generalized Logistic
Subnetwork 1

Generalized Logistic
Subnetwork 2

Figure 9 - Neural network representation of Equation 2, the P-T
model.

It was found that significant portions of the data variance could be accounted by the seven-
parameter difference-of-sigmoids model. The amount of variance accounted by this model on ten
data sets is shown in Table 1. In all cases, at least 95% of the data variance was accounted by the
network-embedded model. A typical model fit of a normal P-T data set (file A_1) is shown in
Figure 10. Of particular interest is the success in modeling the loose connection data curves. One
characteristic of these curves is a failure to return to zero pressure after 100 milliseconds. An
example of the data fit is shown in Figure 11.

File Name Fault Type Variance Accounted
A1 Normal 95.8%

A2 Normal 95.8%

T127 Normal 96.3%
R0O7C5-C Blowby 96.8%
R08C5-C Blowby 96.9%

B_1 Connector 97.5%

C_1 Connector 98.8%
T122_1 Connector 97.4%
R04C2-C Ringing 97.6%
R08C2-C Ringing 97.7%

Table 1 - Variance accounted by seven-parameter difference-
of-sigmoids model on 100 millisecond analysis interval.
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Figure 10 - A least-mean-squares fit of the seven-parameter
difference-of-sigmoids model to a normal P-T data set. This fit
(heavy line) used 51 data points and seven iterations of the
conjugate gradient descent algerithm.
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Figure 11 - The seven-parameter model (heavy line) is capable of
modeling disparate asympiotes. Inspection of the model asymp-
tote parameters is an indicator of existence of particular fault
types. This particular graph displays a loose connector fault.
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4. FOCUS-OF-ATTENTION REGIONS

After the registration problem has been solved, the measured data must be compared with the
matched model. Each transducer anomaly type is associated with a corresponding data-model
mismatch anomaly. A pattern recognition device associated with a particular transducer anomaly is
uscd to inspect the difference between the data and the matched model and to determine if these
differences meet the expected differences associated with the corresponding graphical anomaly.
Such pattern recognition devices are custom designed for a particular anomaly type and have two
components: a set of feature detectors and a feature-set evaluator.

A set of feature detectors for a particular anomaly type is most likely to be fashioned from
traditional signal processing techniques. For example, 60 Hz ground loop noise is best detected by
passing the data-model difference through a 60 Hz matched filter. More than one procedure may
be required to detect the presence of a graphical anomaly. Thus, the output of a set of feature
detectors may be considered to be a vector of values with each value being the output of a particular
feature detector algorithm.

This feature vector is then processed by a corresponding feature-set evaluator. The evaluator
effectively partitions the feature space into classification categories. Each evaluator considers
several classification categories, including no evidence for the anomaly, some evidence for the
anomaly, and strong evidence for the anomaly.

This modular decomposition of feature detection and classification is inspired by parallel
processing models of cognitive processes. It also lends itself to effective maintenance strategies.
It is possible to tinker and revise a particular anomaly detection and classification module without
disrupting the processing capabilities of the remaining software system.

Finally, the outputs of each anomaly-specific interpreter are integrated to produce an overall P-T
curve diagnosis. Because multiple transducer problems can exist simultaneously, the integrator
will use cooperative rather than competitive architectures. If no anomalies are detected, then the
weapons test operator can be advised to proceed with testing. If anomalies are detected (i.e.
blowby, ringing or faulty electrical connection), a list can be displayed. Further, a knowledge-
based system can be integrated with the anomaly detection and classification system to recommend
specific corrective actions and additional test procedures, as appropriate to the anomaly type.

However, the model fit to the entire data set is, in general, not sufficient for the specific anomaly
detectors to properly function. Most of the anomalies are manifest in the ascending or descending
portions of the P-T curve. thus, it makes sense to optimize the model fit in this region before
engaging the specific anomaly detectors.

Whole-curve registration is a critical first-step in this process. If the data are well behaved, it is
relatively easy to automate the location of the critical portions of the P-T trace. But then, if the data
are well behaved, there is little need to engage the anomaly detectors. Whole-curve registration
allows an automated system to identify critical portions of the P-T trace when the data is not well-
behaved. After registration, model parameters and model behavior are used to estimate the location-
in-time of the critical portions of the P-T trace.

From these values, four subregions, or foci-of-attention, are defined. These are:

A. The rise-and-fall portion of the curve. This focuses on approximately the 90% of
the uppermost portion of the curve.
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B. The top-of-curve. This focuses on the upper 50% of the curve, or to within 3 dB
of the model peak.
The ascending limb. This is the interval that includes approximately 90% of the
ascending portion of the curve, terminating at the curve peak.

D. The descending limb. This is the interval that includes approximately 90% of the
descending portion of the curve, beginning at the curve peak.

It was hypothesized that difference-of-logistics model would account for at least 95% of the
variance of a normal P-T data set when measured on various FOAs at a sampling rate of 200 KHz,
the maximal data rate, and the model parameters are readjusted for each FOA.

Tt should be emphasized that five separate neural networks are represented by these hypotheses:
one for the general data fit, and one each for the four foci-of-atiention. These five networks arc
topologically equivalent and represent the same P-T model. What differs is the data set on which
the seven free parameters arc optimized. This is the salient idea behind the differing foci of
attention: optimizing the model fit on a smaller data interval will allow the detection and
classification of fault artifacts.

The five different model fits required approximately 20 seconds per channel of computer time on a
Hewlett-Packard 750 utilizing a Risc-based architecture and operating at 50 MHz. Almost all of
this time was expended in evaluating the mean-square-error function for various values of the
seven model parameters. It is believed the conjugate gradient descent algorithm reduces the
number of error evaluations by a factor of 10 (personal conjecture) when compared with the
backerror propagation technique.

Table 2 shows the variance accounted for each of the four foci-of-attention described above.

Variance Accounted

File Fault R.&F. T.C. A. L D. L.
A 1 Normal 99.7 99.5 89.9 97.1
A2 Normal 29.8 99.4 99.2 98.0
Ti27_2 Normal 97.2 97.7 99.9 5.9
RO7C5-C Blowby 99.3 99.7 99.8 98.2
R08C5-C Blowby 99.1 29.5 99.6 98.4
B 1 Connector 98.1 99.7 99.9 86.2
C_1 Connector 99.5 99.5 89.9 g9.2
Ti22_2 Connecior 92.2 87.4 99.2 96.6
R04C2-C Ringing 29.3 99.3 99.9 98.3
R08C2-C Ringing 99.6 99.2 99.8 99.8
Table 2 - Variance accounted for each of the four foci-of-attention: Rise and
Fall, Top of Curve, Ascending Limb, and Descending Limb.

In all but two cases the model was able to acount for at least 90% of the data variance. Those cases
in which less of the variance was accounted is due to the gross deviations of the data from the ideal
P-T trace. Thus, the amount of variance accounted by the model is itself an indicator of anomalous
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system behavior. The remaining figures show how (conceptually, at least) it is simpler to detect
specific anomalous behavior from the residuals (model minus data).
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Figure 12 - Model fit to top-of-curve focus of data exhibiting
blowby error. The heavy line represents the model fit on the focus
interval. This interval is dynamically determined from the initial,
full-interval model fit.

Figure 13 - Residuals plot derived from Figure 12. Note how
blowby artifact is translated to an aberant, isolated crossing of the
horizontal axis.
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Figure 14 - Model fit to top-of-curve focus of data exhibiting ringing
error. The heavy line represents the mode! fit on the focus interval.
This interval is dynamically determined from the initial, full-interval
model fit.
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Figare 15 - Residuals plot derived from Figure 14. Ringing can be
reliably detected simply by characierizing the axis crossings of the
residuals plot.
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5. CONCLUSIONS

In genceral, the simple seven-parameter, difference-of-sigmoids model performed better than
anticipated in modeling the various data sets. In fact, it was anticipated (and hoped) that less
variance would be accounted by model fits to data sets exhibiting particular fault types. Significant
deviations from the expected variance accounted in normal data sets only occurred on narrow
FOAs in which a connector fault generated a block-like data trace.

In particular, the model fit was exceptionally tight on the ascending limb. However, it was
observed that the model fit was frequently poor on the lower portions of the descending limb - the
P-T “tail”. This was due to a lack of symmetry between the tail portion and that part of the
descending limb immediately following the data peak. Later work has identified this region as
coinciding with the exit of the shell from the weapon muzzle - this results in a drastic change in
pressure-model dynamics.

Proof that significant automated diagnosis capabilities can be derived from a relatively simple
system that matches a generic model to a P-T data set, and then applies specialized fault diagnoses
procedures to the model-data residuals is evidenced. This procedure is modular: the model match
can be revised without affecting the specialized fault detectors, and each fault detector can be
modified without affecting the performance of the remaining AFDPS components.

This modular approach will support further development efforts. In particular, this approach
directly supports a general graph-understanding methodology that can be applied to any problem in
which interpretation of graphical data is an integral part of a decision analysis process.

Success for the graphical understanding approach will allow the automation of the transducer fault
diagnosis process, and thus eliminate the requirement of having a data interpretation expert on-site
or on-call during ballistic chamber testing. A fast, automated turn-around of analysis results will
allow the transducer installation personnel to operate more effectively.
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AdVISOR
(Advanced Visvalization of Simulation Or Reality)

AdViSOR(Advanced Visualization of Simulation Or Reality) is a
general purpose data visualization application which runs on a Silicon Graphics &
workstation. A companion code to the ThOR(Theater Optical and Radar)
signature simulation, AdVISOR provides for the visualization of all data
generated within ThOR with line plot displays, rendered object displays, and
image displays. Input data may be entered directly from the ThOR output file, a
previously created AdViSOR file, or from columnar ASCII files. Many standard
image file formats may also be input as well as many unique formats used within
the missile defense arena.

AdViSOR has been used in the analysis and study of test target
signature phenomenoclogy for PEO-MD, TTPO, Optical Discrimination
Algorithm(ODA) Development Center, ARROW, and the ODES Demonstration

Figure 1. Typical AdViSOR screen with a rendered view, a 2D plot view, and
© {wo lmage views.
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Flight(ODF) programs. Signature phenomenonology studies using AdViSOR
have been conducted on infrared imagery/data from Sea Light Beam
Director(SLBD), High ALtitude Observatory(HALO) InfraRed Imaging
System(IRIS), Airborne Surveillance Testbed(AST), and Experimental Test
Site(ETS) of Storm and Lance test targets.

As the name suggests, AdViSOR was written with the intent to
display simulation data alongside test data in order to validate the simulation code
as well as characterize the real system being simulated. Through different
combinations of two—dimensional plot views, three—dimensional rendered views,
and image views almost any data set may be visualized as shown in Figure 1. In
addition, time sequential data sets plotted in various views may be animated
synchronously with the aid of a sequence controller. One view is chosen to have
the master time and all other selected views slave their time to the master. In this
manner, time sequences of test data may be animated and compared to the
corresponding simulation data.

o

oo

Figure 2. AdViSOR file input screen showing user selection of specific data

items within file contents in order to maximize usage of computer
memory and user’s time.
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In order to make the most efficient use of available computer
resources, AdViSOR implements some unique features for the manipulation of data
items. When loading data from an input file, the user may select only the data
items within the file that are needed and load those into memory as illustrated in
Figure 2. This feature also saves a considerable amount of time for the user when
using large data files where only a smaller portion of the file is needed for analysis
or visualization. All data items loaded into AdViSOR are organized into a standard
format called a data module and placed within a clipboard list. A list of all data
modules currently loaded into memory may be viewed in the clipboard viewer.
The clipboard viewer lists the data modules with their data type, array dimensions,
and source file. The user may rename, rearrange array dimensions, dump to an
ASCII file, or delete data modules within the clipboard viewer. The clipboard
implementation enables the user to display/visualize a data module concurrently in
different views, possibly in different types of views (such as a rendered view and a
2D plot view) without duplicating data.

At present, three types of views in any combination may be created in
AdViSOR (2D plot views, render views, and image views) with a maximum of
sixteen views on the screen at one time. The 2D plot view provides a simple
mechanism for visualizing two dimensional data where any dimension of any data
module may be plotied against another. Within the 2D plot view the data may be
autoscaled, scaled to discrete limits, or zoomed all under mouse control. Either line
plots or point plots may be produced. The render view provides for the
visualization of three dimensional geometry models with intensity or color scaled
polygons. The attitude of the model along with a specific sensor or view
perspective may also be initiated. Within the render view the model may be
zoomed, rotated, or translated all under mouse control. The image view provides
for the display of multiple images which may be autoscaled over each individual
frame or over all frames within an array of images, or clipped to a user supplied
intensity range. Several color look up tables are provided for the display of the
images. The user with mouse control may arrange the images in any manner
within the view changing their display size as well as cropping the image(s) to any
size desired.
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THOROUGHLY MODERN DATA ANALYSIS AND VISUALIZATION

Jon Wada Carolyn Boettcher
Hughes Aircraft Co.
ABSTRACT

This paper describes an ongoing effort to upgrade existing data analysis capabilities to
provide a thoroughly modern data analysis and visualization facility that will support an
automated, highly efficient process. Large volumes of instrumentation data collected in the
radar integration laboratory or during flight test are typically stored on high speed tape
recorders and analog videotape. Additional data is available in the form of notes and
debrief summaries. This data must be accessed, analyzed and correlated to evaluate radar
system performance, facilitate system verification and trouble shooting, and investigate the
effect of new processing techniques and algorithms. Current data analysis software
employs procedural code that is difficult to reuse, executes off-line, and cannot access
multi-media data. In contrast, the system we are developing is envisioned to support a data
analysis process as it "should be". That is, the tools eliminate or automate tedious,
mechanical tasks; provide on-line visualization of all critical information; and are easily
accessible to users and developers. The paper describes both our vision for the completed

system and its current implementation and deployment on radar programs within Hughes.

INTROD ON
Performance evaluation is a critical step in the development of radar systems. For that
purpose, Hughes has developed instrumentation and data analysis systems for all of its
radar programs, including the F-15 APG-63 and APG-70, the F/A-18 APG-65 and APG-
73, the F-14 APG-71, the B-2 ALQ-181, and various classified programs. Over the life of
these programs, Hughes has developed tools to help in reducing and analyzing data.
Typically, older tools are hosted on mini- computers, execute in batch mode, and produce
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off-line graphics. The analysis software is often difficult to reuse and for these older tools,
there was no defined reuse process.

The data analysis process supported by these older tools is extremely labor-intensive;
very litde is automaied. Information about flight test configurations and content is not
readily available to analysts. Documents are either paper or in electronic formats that are
not easily shared. Analysis applications, most often implemented in FORTRAN with
primitive tools, are built with no standards for architecture or interfaces and no planning for
reuse. In addition, the platforms on which these tools are hosted have insufficient power
for large scale simulation.

Several years ago, we began to upgrade the existing data analysis tools and processes
by taking advantage of the latest COTS technology, including work-stations, interactive
visualization, multi-media capabilities, and COTS software tool kits that facilitate reuse and
provide visual programming. The goals for the new data analysis system include:

o Eliminate tedious or mechanical tasks by using tool kits, a standardized
application programming interface (API), application frameworks, and graphical
user interface.

o [Facilitate access to critical information by developing database links to
critical information, providing tools for searching and organizing data, and
exploiting interactive visualization with color, three dimensional graphics and online
video and animation.

o Support large-scale simulation and extensive post-processing analysis with
toolkits and a standard simulation architecture.

o Integrate many facets of radar development including rapid prototyping
and simulation, test planning, data analysis, and problem administration.

o Provide open access to data and analysis software for users and

developers.
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This paper reports on progress we have made in exploiting state-of-the-art COTS
technology to automate much of the manual data reduction and analysis process,

dramatically decrease data analysis cycle time, and increase analyst productivity.

BACKGROUND

The Advanced Data Reduction and Analysis System (ADRAS) project was begun in
1991 in response to the anticipated needs of several new programs. A review of the
analysis process and tools initially proposed for these programs revealed that the quantity
of data to be analyzed and the required analysis cycle times were more than could be
accommodated by then-current tools and processes. Analysis of a single, two-minute radar
test on one project, for example, might require as much as several months to complete.

In response, a survey was undertaken of COTS high performance graphics
workstations and Silicon Graphics was selected as the initial platform to host ADRAS. An
initial version of ADRAS was developed and released in July, 1992 for use on a new radar
development program with a second version released in March, 1993. This second version
is now being successfully used on that program. Enhancements to ADRAS and corrections
of bugs has continued to the present.

The success of ADRAS prompted us to consider its widespread deployment across all
Hughes radar programs. As a result, ADRAS is currently being used on two other radar

programs and has been targeted and demonstrated for a third program.

ADRAS ARCHITECTURE
The current version of ADRAS is hosted on SGI Indigo and Indigo 2 workstations
running at 100 to 200 megaHertz under IRIX 5.2, SGI’s version of UNIX. Each
workstation typically has 64 megabytes of RAM, 3 to 5 gigabytes of disk, and a 3-D
accelerator graphics board. Each user has a 20 inch monitor with 1280x1024 pixels and
24 bit color. Workstations communicate with a SUN/490 or Silicon Graphics Power
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Challenge XL server over Ethernet. Instrumentation data is made available to each
workstation from the server. To store instrumentation data from multiple flight tests, a tape
juke box sits on the server. A single juke box may store 6 ierrabytes of data or more.
Figure 1 illustrates a typical workstation configuration for ADRAS. The figure also shows
the interface to the actnal embedded system through a Universal Interface Adapter (UIA)
that sends data to four DCRSI uvnits capable of recording radar data at a combined 50
megabytes per second. The four data sireams are merged by a Multi DCRSi Interface

(MDI) and stored on the juke box or sent directly to the server.
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Figure 1. ADRAS Workstation Configuration. Analysts have immediate
access to multi-media instrumentation data.

Consisting of approxmiately 28,000 lines of code, the ADRAS software is
implemented using SGI’s port of the AT&T C++ Language System, Release 3.0. ADRAS
also makes maximum use of COTS software available on the SGI platform. As currently

implemented, the ADRAS software architecture has three layers, illustrated in Figure 2.
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Figure 2. ADRAS Software Architecture. The three layers of the ADRAS
architecture makes maximum use of COTS components.

1. Data Layer includes instrumented test data, index files for searching the data, and
a set of relational data bases called Primary Instrumentation Files (PIFs) that map
from the Operational Flight Program (OFP) variables into the instrumented data.

2. Toolkit Layer includes an analysis tool kit of reusable classes, the standard
UNIX and C++ libraries, the ADRAS API, and API’s to selected COTS tools.

3. Application Layer includes a standard set of analysis applications, interactive
visualization modules for use with SGI's IRIS Explorer environment, and custom
analysis applications built by ADRAS users to perform project and radar mode
specific tasks.

The data layer is composed entirely of custom software whose purpose is to organize
and provide access to instrumentation data. Figure 3 illustrates the schema or relationships
between the various types of data files.

e Raw Instrumentation Data is partitioned into standard UNIX files of

approximately 100 megabytes length.
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o Index [iles provide access to the raw instrumentation data.

Automatically

generated table of content (TOC) files enable efficient searching on time code, bus

source, and block identification. Catalog files can be created by users to create

custom sets of data and TOC files.

o PIF (Primary Instrumentation File) Database provides the information to

parse instrumented variables. It is generated automatically from the OFP.
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Figure 3. ADRAS Data Schema. The schema for the data layer enables
symbolic access and fast searching of imstrumentation data.

The toolkit layer is composed of both COTS and custom sofiware.

o ADRAS APT is a C++ class library that defines the ADRAS standard classes and

abstract data types that are linked into applications to enable access to

instrumentation data.
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* Analysis Toolkit is a C++ class library that includes useful classes such as time
of day, linked lists, coordinate transformations, etc.
e COTS Toolkit includes standard UNIX and C++ libraries, Motif, and SGI's

Inventor and Explorer for interactive 3-D graphics and scientific visualization.

ADRAS VISION

ADRAS employs several implementation strategies to achieve its vision of a thoroughly
modern data analysis. Software portability and extensibility are achieved by using a
layered architecture, modularity, and object orientation; by planning for multiple target
platforms such as SGI, Sun, HP-UX, MacOS and Windows/NT; by emphasizing
commercial standards; and by using off-the-shelf components wherever practical. The
approach is based on an open system architecture that employs standard protocols to
enable inter-application communication and messaging across networks, even for multi-
vendor systems; and a layered architecture that will allow system components such as
operating systems and user interfaces to be changed without affecting the entire system.

Some of the standards used in implementing the current version of ADRAS or planned
for future versions include:

* X/Motif for windowing, graphics and user interface

* SQL for database queries and transactions

* TCP/IP and NFS for network communication

Key technologies that are essential to the success of ADRAS include: information
systems such as database management, document and image management, online video and
communications; data presentation and user interfaces, including graphics, scientific
visualizations, and graphical user interfaces; and radar modeling and application
development, including rapid application development, a standard simulation architecture,

application frameworks, modeling and large-scale simulation support. All of these
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technologies are built on top of a computing infrastructure that includes mass storage,
networking, and inter-application messaging.

Using these technologies, we believe that a typical analysis application can be built
quickly from a library of layered, reusable components. The layered architecture enables
problem-domain experis to concentrate on their core expertise and relieves them of
concern with detailed data formats and data extraction methods. Moreover, developing a
simulation framework and reusable libraries of common radar algorithms will further

relieve the analyst from repetitive effort in developing new mode simulations.

VISUAL PROGRAMMING

COTS interactive visualization tools such as Mathematica, MATLAB, and SGI's
IRIS Explorer can also speed analysis and algorithm development.  As an example, the
Explorer is a visual programming framework for assembling modules into application
maps that is being used at Hughes on several radar programs. In Explorer terminology, a
module performs a single task such as synthesizing or retrieving data, computing FFT’s or
noise estimates, graphing or rendering. A map is an application that performs an analytic
task such as simulation, statistical analysis, etc.

In the Explorer environment, conirol panels and editable inter-module connections
enable analysts to alter parameters and configurations on the fly. The visual, interactive
Map paradigm with its drag-and-drop connection makes it easy to reconfigure and adjust
processing flows. The control panels allow easy adjustment of processing parameters. An
Explorer Map looks like a block diagram, the way many engineers like to think about
systems. Documentation is accomplished effortlessly via snap shots of screens. Finally,
interactive, 3-D graphics is available for effective  presentation of information.
Interactive manipulation of 3-D images, including real-time rotations and translations

greatly enhances the usefulness of data.
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Explorer integrates easily with other ADRAS analysis tools and modules. The highly
interactive, visual Explorer programming paradigm facilitates marked improvements in
analysis cycle time.  Explorer’s modular approach allows easy reconfiguration of
algorithms. It lets the analyst experiment with algorithmic variations with a minimal

amount of programming effort.

ONLINE VIDEO AND ANIMATION

ADRAS includes support for online access to cockpit video that is recorded during
flight. Online video access can increase productivity by eliminating contention for access
to videos and VCRs, by reducing the time spent searching for videos, by allowing analysts
to review videos at their workstation where they have immediate access to other analysis
tools, and by facilitating frame-by-frame viewing of videos and capture of still images for
study and presentation.

ADRAS also includes support for 3-D animated simulation of ownship kinematics
and antenna pointing. It is envisaged that ADRAS will have access to terrain databases that
can be overlaid with target and ownship data. For example, figure 4 illustrates a scenario
where the antenna is being pointed to illuminate a ground target. As shown, ownship’s
antenna beam on the left of the map is not illuminating the target to the far right of the map.

The simulation can help determine when the target is in the antenna beam.

LESSONS LEARNED
For many of the ADRAS developers and users, this was their first experience with
UNIX, C++, and the object-oriented programming paradigm. Analysts who desired it
were given 20 hours of class room instruction in C++ held after working hours.
Otherwise, analysts were given a copy of Stan Lippman’s C++ Primer. Use of class
libraries and abstract data types was taught by providing sample code and view graph
presentations, and by informal one-on-one instruction. Training in Unix was provided by
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making available a copy of Kaare Christian’s The Unix Operating System and Kernighan

and Pike’s The Unix Programming Environment and by much one-on-one instruction.

Analysts’ assessment of the adequacy of this training was mixed. Some analysts felt
the need for some formal training in the Unix environment. In addition, since this was the
first C++ experience for most of the analysts, many of them do not fully understand the
software architecture. This makes it more difficult for them to fully utilize the libraries
when developing applications and to debug their applications. However, the ready
availability of programming assistance mitigated this difficulty to a considerable extent.

In the future, a combination of training and programming support will be necessary to
ensure that analysts can make full use of data analysis tools which are growing in
complexity and sophistication. Training must be matched with the analyst’s interest and
ability.  Programming support must be expert and immediately available. Delays
compound analyst frustration and degrade problem response time.

The ADRAS API was still being developed as analysts began to use the system.
Although this caused some frustration, we believe that this real-world beta testing resulted
in a very usable set of tools. As a result of this experience, we believe that end-user
feedback into the design of user interfaces is essential and must be based on real-world
usage.

A final lesson learned is the cost effectiveness of investing in code development tools.
They will pay for themselves in programmer productivity and code quality. For release 2.0
of the ADRAS API, almost 20,000 lines of code were written and tested with only 29 bugs
discovered by users. This was largely due to the exceptional suite of development tools

that were available.

E RE WORK
When completed, ADRAS will include several information based tools. These include

flight-test database query and data entry applications; document managers and viewers,
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including on-line process documentation using HTML; and communcation tools such as
multi-media E-mail, whiteboarding, and Usenet-style news groups. More extensive signal-
and data-processing functionality will be added to the IRIS Explorer module set, and that
module set may be ported to similar environments such as AVS/Express and Khoros as
well. Integration of analysis applications will allow users to query a database of flight-test
descriptions in order to select a test event of interest, view the cockpit video for that test in
order to isolate a specific radar event (e.g., a false detection or apparent system failurc),
and then retrieve and analyze the appropriate radar instrumentation data, all within an

integrated graphical user environment.

CONCLUSION

The ongoing ADRAS project is bringing higher levels of automation to the process of
analyzing the large volumes of information typically collected during radar system
integration and flight test. When ADRAS is fully implemented and deployed and analysts
have been fully trained in using its features, we expect the turnaround time for identifying
and fixing radar performance problems to be significantly reduced. ADRAS has already
achieved significant advances over the older data analysis systems by putting all relevant
information online at an analyst’s workstation and providing a visual programming

environment for reuse and rapid prototyping of algorithms.
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THE ECONOMIC BENEFITS OF
SOFTWARE PROCESS IMPROVEMENT

Kelley L. Butler

OC-ALC/LAS
3660 C Avenue, 2512
Tinker AFB, OK 74145-9144

Overview

This paper discusses a study that was performed by Software Productivity Research at
the Oklahoma City Air Logistics Center Directorate of Aircraft Software Division’s (OC-
ALC/LAS) Test Software Branches from April to June 1994. The goal of the study,
performed under contract to Mr Lloyd Mosemann, the Deputy Assistant Secretary of the Air
Force for Communications, Computers, and Support Systems (SAF/AQK), was to determine
the economic benefits of software process improvement. This paper will not attempt to
recreate Software Productivity Research’s report, instead it will provide an overview from the
perspective of the organization that was studied.

Introduction to the Organization

The Oklahoma City Air Logistics Center (OC-ALC) is located at Tinker Air Force
Base. The Software Division, composed of over 400 personnel in seven branches, is
responsible for the development and maintenance of many different Air Force software items.

The Test Software Branches develop and maintain Test Program Sets (TPSs) which
are used with Automatic Test Equipment (ATE) to provide repair capability for complex
avionics. The Industrial Plant Equipment Branch, provides software support to jet engine,
constant speed drive, and eddy current testing along with the support of the software for
several automated processes associated with jet engine overhaul. The weapon systems
affected by the software products produced and maintained by the Test Software and
Industrial Plant Equipment Branches include the A-10, B-1B, B-52, C-141, C-5, E-3, (K)C -

135, F-15, F-16 aircraft and six engines.

Three branches develop and maintain Operational Flight Program (OFP) software for
the E-3, B-1B, B-52, Air Launched Cruise Missile (ALCM), and Advanced Cruise Missile

(ACM).

The Management and Technical Support Branch provides the personnel, training,
funding, drafting, computer, and other support functions.

The study focused on four Test Program Set projects located in the Test Software
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Branches. The first project began in March 1986 and was completed in May 1989 and the
last project started in June 1992 and was completed in March 1995.

Hereafier, the test software branches will be referred by the Air Force organizational

mnemonic, LAS.

Software Productivity Research

Software Productivity Research (SPR), the contractor hired by SAF/AQK to perform
the study, is a leader in the software management and measurement industry. One of SPR’s
products, Checkpoint, 2 knowledge based tool that estimates, measures, and assesses software
environments, was used for the study. Checkpoint’s knowledge base is composed of data
from over 4,700 software projects. The knowledge base can be used to assess a project
against industry or internal standards for cost, quality, schedule, and productivity. The
Checkpoint knowledge base allowed SPR to make comparisons among the four LAS projects

used in the study.

Software Process Assessment History for the Test Software Branches

LAS performed their first software process assessment in 1989 when they were rated
a Software Engineering Institute (SEI) Maturity Level 1. In 1990, LAS was chosen by the
SEI to be an alpha site for the updated software process improvement methodology. That
assessment, performed during March 1993 by personnel from the SEI, resulted in LAS being

rated as an SEI Capability Maturity Model (CMM) Level 2, the first in the Air Force.

LAS is currently working on achieving 2 SEI CMM Level 3 with the next assessment
scheduled for 1996. SAF/AQK has set a goal of an SEI CMM Maturity Level 3 for all Air

Force Software organizations by 1998.

Process Improvement Approach

LAS has been working on process improvement since 1986 and began their
relationship with the SEI in 1989. The SEI Capability Maturity Model (CMM) has been the
basis for the process improvement efforts since its release in 1991, To facilitate process
improvement, LAS has developed and implemented a process improvement infrastructure
whose purpose is to guide and monitor the organization’s process improvement efforts.

The LAS process improvement infrastructure includes the Management Steering Team
(MST), composed of the senior organizational management along with the Software
Engineering Process Group (SEPG) composed of technical personnel. Additionally, Technical
Working Groups are cstablished, as required, to work specific arcas.




The MST and the SEPG work together to insure that the improvement efforts are
effective and that they are solving the problems facing the organization. The SEI CMM is
used to guide the process improvement efforts.  Yet, while many of the improvements that
are worked by LAS can be directly traced to the CMM, there are also many that are worked
because, while they may not be directly traceable to the CMM, they are issues to the
organization and must be resolved. ~ This approach, work all issues, not just CMM issues. is
one of the reasons that LAS feels they have had success in their process improvement efforts
and why, as this report will detail, they have seen an impressive return on their process
improvement investment.

The biggest key to LAS’s success is the Management Steering Team and the focus and
attention that they bring to the process improvement efforts. Nothing can replace top
management leadership and support. The MST meets monthly, with the meetings often
lasting three to four hours. Process improvement status is briefed, issues are resolved, and
resources are assigned to the improvement efforts.  The actions of the MST send a clear
message to the LAS employees that process improvement is important.

Another key to success is the funding for process improvement that has been provided
by Air Force Material Command. The funding is significant; it allows the improvement
efforts to be worked at the same management attention level as the organization’s other '
workloads. The funding that the Air Force is providing for process improvement is one of
the reasons that a study of this type was needed. Many organizations are making large
investments in process improvement and it is important that the benefits of those investments
are quantified. ~ Organizations may not show a quantifiable return during the early process
improvement efforts, but as they progress up the SEI CMM Maturity scale they should be
able to show the benefits of their efforts. There are several different methods used to show
the benefits of process improvement, not just the one that is outlined in this paper; others are
outlined by the SEI in "Benefits of CMM-Based Software Process Improvement: Initial
Results," Technical Report CMU/SEI-94-TR-13.  The bottom line is that while there may not
be a standard definition for Return on Investment (ROI), every organization that is investing
money and personnel in process improvement should be asking themselves, "What am I
seeing in return?" They need to look for both the quantifiable and unquantifiable benefits.

Study Objectives

SAF/AQK approached LAS in 1993 to ask if they would be willing to be the subject
of a study to determine the economic benefits of software process improvement. The goal of
the study was to make a business case for process improvement. There is a tremendous
focus on SEI Maturity Level but, in today’s increasingly competitive world, many are asking
what the real benefits are, what is the bottom line, how will my organization benefit from
process improvement?

This study, to the best of LAS’s knowledge, was the first independent study of any
organization’s software process improvement Return on Investment (ROI). Independence
was key. Many groups, including LAS, have been reporting ROI data for several years yet
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some critics were able to discount the reports as being self-serving for the organizations
reporting the savings. SAF/AQK wanted a view, independent of the Air Force and the SEI
that showed the impact of CMM-based process improvement.

Project Selection

Four LAS projects were selected for the study. Each involved the development of
Test Program Set (TPS) software to test avionic circuit boards for three aircraft and one jet
engine. The projects spanned an eight year period from 1986 to the present. It was
important that the projects selected were enough alike to invite comparison and that they
cover a wide range of time to show the impact of the organization’s process improvement

efforts.

Project 1 (Baseline Project): C-141 All Weather Landing System (AWLS), 1986-1989

Project 2: B-1B Electrical Multiplexing System (EMUX), 1986-1988

Project 3: C-5B Automatic Flight Control System (AFCS), 1987-1990

Project 4: F110 Digital Engine Controller (F110-GE-129 DEC), 1992-1994

Study Methodology

As was stated above, this paper will not go into detail about the study methodology
and data collected. That is contained in the report prepared by SPR for SAF/AQK, but a
brief outline of the methodology used and data collected follows.

The study involved both interviews and data collection. The contractor conducted
interviews with the project managers, project personnel, and LAS customers. Project
personnel were asked to complete, as a group, two questionnaires. One was the Software
Productivity Research Checkpoint questionnaire which looks at four major areas: personnel,
process, technology, and environment. The second questionnaire, which SPR constructed
especially for the study, concerned the SEI CMM Level 2 and Level 3 Key Process Areas.
Each project team was asked to answer the questions in reference to how well the Key
Process Areas were performed for that project.

In addition to the two questionnaires and the management and customer interviews,
SPR also collected data on each of the four subject projects. The data collected included:
project complexity, cost, schedule, and size (in source lines of code).

The contractor used the data collected in the interviews and from the projects along
with the SPR Checkpoint tool to determine the impact of LAS’s software process

improvement efforts.
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Study Results

Table 1 outlines the results of the SPR study.  SPR noted improvements in four
areas: process improvement ROI, defect rates, maintenance costs, and productivity.

The analysis performed by SPR indicates that the investment of $1.5 million dollars
over an eight year period resulted in a cost savings of $11.3 million dollars when the three
subsequent projects were compared to the baseline project for a ROI of 7.5t0 1. SPR
arrived at the $11.3 million dollar figure by determining the additional amount the three
subsequent projects would have cost had there been no improvements in productivity.

The study also showed that defect rates from the baseline project to the second project,
the only other project for which LAS currently has ample defect data, had been reduced by a
factor of ten. The baseline project experienced 3.39 defects/thousand source lines of code
(KSLOC) compared to 0.28 defects/KSLOC for the second project, the B-1B TPS project.

Additionally, data provided by one of LAS’s customers showed that in the past two
years, LAS has reduced the cost of a TPS maintenance correction by 26%. Although
maintenance was not a focus of the study, it is a large part of LAS’s workload and therefore
this data was very encouraging. Another important aspect of the improvement in the TPS
maintenance correction process is that some have argued that the SEI CMM cannot be
effectively applied to maintenance organizations. LAS has never believed that argument. in
fact, it is stressed to LAS employees that maintenance actions must be treated as "mini"
developments. All phases of the process have to followed if a quality product is going to be
produced.

The most recent TPS development project is ten times more productive than the
baseline project. This is attributed to improvements in both process and technology and while
the effects of each cannot be separated, both SPR and the customer felt that the project
benefited greatly from the LAS process improvement efforts.

Using the data from the two questionnaires completed by the representatives from the
four projects, SPR developed rankings for the SPR and SEI Levels for each of the four
projects. Each group of project representatives were asked to answer the questions from the
perspective of how the activities were performed for that project. ~ The SPR questionnaire
looks at areas such as process, personnel, technology, and environment, while the
questionnaire used for the SEI Level looked at the SEI CMM Level 2 and 3 Key Process
Areas, including project planning, quality, and training. Analyzing the questionnaire data,
SPR was able to show that, starting with the baseline project, each successive project had
improved its SEI and SPR rankings indicating that LAS had successfully implemented a
continuous process improvement program.
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Category Result

Return on Investment 7.5 to 1, An investment of $1.5 million dollars
resulted in a savings of $11.3 million dollars

Defect Rates 10X reduction from the baseline
project to the second project

Maintenance Costs 26% reduction in the average cost of a TPS
maintenance action over last two years

Productivity 10X increase from the baseline project to the
most recent project

Table 1: Benefits of Software Process Improvement.

Should Other Organizations Expect These Results ?

Would every organization that has implemented process improvement and moved up
the SEI CMM Maturity Model show the same results as LAS? Would their results be better

or worse?

These questions are difficult to answer. Every organization is different; yet, when the
SEI studied the benefits of CMM based software process improvement, using ROI information
that had been reported by several organizations, they noted that the ROI ranged from 4 to 1 to
2.8 to 1, with the median being 5 to 1. The ROI of 7.5 to 1 that was independently

determined for LAS by SPR is within this range.

Conclusions

The study was useful in many ways. For LAS, it showed that the process

improvement efforts were having a positive impact on the organization. For other
organizations, it is a data point that can be used to generaie support for process improvement.

Many felt that LAS was taking a risk in allowing a contractor to independently verify
the process improvement results. That may have been true, but it was a risk that had to be
taken. The Air Force is making a tremendous investment in process improvement and, as
with any investment, the returns have to be verified. LAS knew, intuitively, that their
efforts had benefited the organization and they had been reporting basic ROI on their
individual improvement efforts for several years, yet they welcomed an independent study to
validate their efforts. Additionally, the study helped identify problems with LAS’s data
archiving methods and introduced LAS to new methods that can be used to monitor their

process improvement ROL
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Another key element of the study was the involvement of the LAS customers. The
customers appreciated the fact that their input was used in the study and SPR was impressed
that the customers were able to provide data showing improvement in the LAS processes.

One key to LAS’s success is that they have worked very hard to implement a process
improvement infrastructure that responds to the true needs of the organization. The SEI
CMM is used only as a guide. An improvement is only implemented if the organization sees
that it will add value to the processes. Additionally, many improvements which cannot be
directly traced to the CMM were very important to the organization and had major impacts on
the improvement efforts. ~ This is not meant to discount the CMM or the impact that the SEI
has had on process improvement. LAS is very much an advocate of the SEI and the CMM.

The point is that the CMM must be applied intelligently.

Process improvement must be an ongoing, continuous process. An organization will
cither continue to get better or they will backslide, it is not possible to stay the same. As
more organizations increase their process maturity, more data will become available to show
the gains that can be seen in quality and productivity. The SEI CMM Level is an important
indicator, but it is hoped that more and more organizations will share their specific data with
the rest of the world as several did in the SEI "Benefits of CMM-Based Software Process

Improvement: Initial Results" technical report.

At the time this study was done LAS had been at SEIl CMM Level 2 for about a year
and the contractor, SPR, felt that much of the organization was operating at the SEI CMM
Level 3. While this study was not an assessment of the organization in the SEI CMM sense,
it did provide the organization with useful insight into the improvement efforts. The
organization will continue their efforts to achieve SEI CMM Level 3 and the higher levels
and they will continue to monitor the returns on their process improvement investment.
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Abstract

The APG-70 Radar in the F-15 Eagle and the APQ-130
Radar in the AC-130U Gunship have a high degree of LRU
commonality despite the different missions of their
respective weapons systems. The time critical nature of
these radars and their diverse functionality have been
addressed in an AF sponsored study' with Hughes
Aircraft Company that has developed an approach to
leveraging a common OFP support facility for both radars.
Key issues include: differences in the missions of the
weapons systems, the aircraft performance, the radar
modes, and the avionics suite; and the nature of the radar
environment and real-time radar return data generation.
This paper outlines the issues encountered in the study’s
investigation, and the features of both the radars and the
support facility that have influenced the design of a
shared OFP test environment.

Introduction

Cost-effective weapons systems support is critical in the current
fiscal environment, and has been a key concern in the deployment of
the AC-130U Gunship. Since the Gunship’s APQ-180 radar uses the
same processor suite and OFP architecture as the F-15 Eagle’s APG-

This work is the subject of an on-going study sponsored by Warner Robins Air Logistics Center
SOF Engineering through the Avionics Software Technology Support (ASTS) Program.

Copyright © 1995 by Hughes Aircraft Company
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70 radar, an atiractive opportunity exists to reduce cost by
leveraging support sysiems.

The APG-70 Software Development Facility (SDF) is currently
under development for the F-15 Avionics Integration Support
Facility (AISF) at Warner Robins Air Logistics Center. The SDF
provides a comprehensive set of OFP development, radar system test,
and instrumentation data reduction and analysis tools in an
integrated environment. The extension of this APG-70 SDF to
accommodate the Gunship APQ-180 support requirements can
potentially provide the Air Force with an exceptional, cost-effective
multi-radar support capability.

System Differences

Table 1 compares the diverse missions and functions of the AC-
130U Gunship to those of the F-15 Eagle. These diverse weapons
system objectives drive differences in semsor systems as outlined in
Table 2.

Table 1. The Weapon Systems Support Diverse Objectives

l F-i5 Eagle AC-130U Gunship
Primary Mission All weather, air superiority/defense | Special Operations Forces special
fighter, long range air strike tactical missions, close range
interdiction
Relative Short mission, high speed, low Long mission, slow spesd, medium
Performance altitude aliitude
Weapons Alr-to-Air AMRAAM Air-to Gnd 105mm Howitzer
Deployment AlM-7M, AlIM-2 40mm Cannon
20mm Gun 25mim Cannon
Air-to-Gnd Various Bombs
20mm Gun

Though wide variances in derived radar mission requirements are
noted in these tables, the underlying hardware LRU’s and software
architecture are largely common between these systems. Figure 1
illustrates the basic hardware LRU’s of the APQ-180 radar system,
identifying LRU’s that are uniguely affected by the Gunship
‘upgrades. Many of the differences in sensor performance are
achieved by the OFP in the radar signal processor (multiple
processing elements controlled by a Mil Sud 1750A array controller)
and radar data processor (Mil Std 1750A). Table 3 contrasts the
different radar modes supported by the radars” OFP. Although the

114




Table 2. Gunship Unique Radar Requirements

Tactics Physics Radar Sensor

Sidelook Large clutter extent GMTI endoclutter processing, dual

Large azimuth coverage channel A/D, new outer az gimbal!

Steep Lookdown | Small radar swath 1-10 El bars, 40 degree polarization

Long Mission More velocity drift/ position error GPS position accuracy for long map
navigation

Slow Speed Smaller Doppler shift Longer map formation, more map
overlay

two radars have many similar modes, the performance and
implementation of these modes are significantly different.

The interfaces of the radar to the rest of the avionics in the
Gunship are also significantly different from the F-15 and affect both
hardware (e.g., a single mission bus with Mission Computer, and
Inertial Reference System, message data vs. separate serial message
buses in the F-15) and software (e.g., message format and content).

Displa
el =
External Interfaces

|DGU '—-L—I—-l— MC
Avionics

Mission Bus
Plum Blt (MC messages, incl. INS info)

______ 1----

RDP
(2)

Radar Environment
(og. Terrain, Weather, Manusvering Tergets)

il_ectrlcel Power,
iquid Coolant,
Misc. Discretes (eg. WOW)

ANT: Antenna

R/E: Receiver/Exciter
XMTR: Transmitter

ASC: Analog Signal Converter]
PSP: Prgrammable Signal Progess
RDP: Radar Data Processor

]
]
1
]
: PS: Power Supply
1
1
[
1
1
]

(B EE% 8F P gsv-lalnssembly Code, AC - Jovial

Figure 1. APQ-180 Radar System LRU’s (shaded boxes: Gunship
Unique)
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Table 3. APQ-180 Tactical Modes

High Resolution Maps Modified from APG-70
Air-to-Ground Range Modified from APG-70
Real Beam Ground Map Modified from APG-70
Weather Map H New for Gunship
Beacon Search (air-to-air and air-to-ground) Modified from APG-70
Beacon Track (air-tc-ground) New for Gunship
Fixed Target Track i New for Gunship
Projectile Impact Point Prediction New for Gunship
Ground Moving Target Indication New for Gunship, (Now on
APG-70)
Ground Moving Targat Track New for Gunship

Support System lmpacts

Because of the high degree of commonality between the radars,
the APG-70 SDF was used as the baseline for assessing the impact of
radar system differences on support system requirements. The WR-
ALC SDF is composed of four configuration items: the Central
Development PFacility (CDF), the APG-70 Radar Test Bench System
(70RTBS), the Advanced Software  Bench (ASB), and the
Instrumentation  Data Reduction and Analysis System (IDRAS).
Figure 2 illustrates the support systems and their associated

APG-70
SDF
CENTRAL DEVELOPMENT
FACILITY (CDF)
Requirements | ¢ Design Tools
U o Configuration Management |~
o Documentation Tools \\&
ADVANCED SOFTWARE
BENCH (ASB) AND APG-70
RADAR TEST BENCH Released
: SYSTEM (7ORTBS) OFP
|
’\/ o Test & Integration of OFFP
o Full Radar System Test with
— Full Complement of Radar
INSTRUMENTATION DATA LAaUs
REDUCTION & ANALYSIS

SYSTEM (IDRAS)

o Flight Tape Media o

Converslon ,{f\)/

¢ Instrumentation Data
Analysis

Figure 2. WR-ALC APG-70 Software Development Facility (SDF)
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functions.

The support of Gunship radar OFP software development can
benefit significantly from direct application of the CDF, because of the
use of common target processors and a common software
development toolset. These development tools, including Jovial and
Assembly language processors, linkers, build tools and a
configuration management system, are supported in the F-15 APG-
70 SDF by the CDF programming environment. This toolset is the
same one used during original contractor development of the APQ-
180. The impact on CDFrequirements is minimal and appears to be
limited to the addition of build execs for the Gunship OFP and
additional storage capacity for Gunship files.

The IDRAS of the F-15 SDF, can also be applied directly to the
support of the APQ-180 radar. The IDRAS, in a manner similar to the
CDF, incorporates the common capabilities used in the original
development and test of the Gunship radar. The only impact on the
IDRAS requirements appears to be the addition of increased storage
capacity for on-line file storage.

The radar system test and integration facilities, however, are
potentially impacted more significantly by differences in the radars
and weapon systems environments. Figure 3 illustrates the basic
components of support required for radar system test. The radar
test bench systems utilize the radar LRU’s for full system integration,
as well as other selected LRU’s of the avionics system for full fidelity
testing of system interfaces. Differences in the LRU sets for the
Gunship, including a new Mission Computer, INS, displays and
controls, as well as radar LRUs, are a significant driver in the
required upgrades to an ASB or 70RTBS. The impacted areas are

Real Time Simulations _ [, 1 '
Ownship, Targets play | |cou INS
RADAR SYSTEM TEST. Radar Environment ’

Avionics (INS, MC ...)
Antenna, Radar LRUs IE-U—J-——‘—I'—"_ MmC

Target Generators

Analog (ATG) Digital (DTG) Dighal 81t YRRION BU® ec, incl. INS into)
IF Signals Digital Samples
> .
1 Physical Support
! Electrical Power,
Liquid Coolant,
ASC RSP“) RDF&) : Misc. Discretes (eg. WOW)

l 1

1

Data Collection & Analysis
1 Real Time Monitoring
y Instrumentation Data

Collecti
APQ-180 Radar System _ |  _0°cio"

?g PSP OFP: PE - Assembly Code, AC - Jovial
2) RDP OFP: Jovial

Figure 3. Radar System Test Support
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primarily physical support and real time simulations.

Physical support impacts (physical fixtures, electrical power,
coolant, and mi s cellaneous discretes) are driven primarily by the
requirements of the non-radar avionics. Physical support of the
radar LRU’s is minimized by the use of enclosures and connectors
that are common with the F-15 radar LRUs.

The real-time simulation models used in the F-15 SDF for the
ownship, targets, ad environment, avionics, and radar front-end
effects are based on mature simulations that have supported
programs in addition to the F-15 (F-14, F-18, and B-2). Many of the
changes in this area are associated with the specific format of the
radar’s interfaces to the rest of the Gunship’s avionics.

In addition, experience gained during the development of the
Gunship APQ-180 radar has focused aitention on improving the
laboratory support system capabilities for testing air-to-ground
performance of the semsor. A significant improvement in the
reduction of developmental flight test needs, and better overall cost
effectiveness of system support, can be gained through target
generator improvements. Endoclutter processing of ground targets
and high resolution map processing test requirements indicate target
generator improvemenis should be incorporated to improve clutter
models as well as to i nCTease the fidelity of returns for map mode
support. Upgrading to full fidelity playback of recorded flight tapes
is also viewed as a sagmﬁcam benefit, especially considering the
limited fleet and constraints on flight test assets. This capability for
laboratory  playback  would also require  associated  aircraft
instrumentation system improvements for sensor data collection.

l

~;

AF Expectations and Needs

In asspssiﬂlg appm&ch@s {0 supporting the APQ-180 radar, key
considerations involve understanding the maintenance processes and
their pm@mmaﬂ application to a shared facility, organizational issues,
and the support strategies for the full weapon system.

Figure 4 provides an overview of the expected SOF block cycle
update processes. The typical SOF block cycle update for routine
system 5@ tware chamges is 24 months, though expectations for the
Gunship have varied to as short as 12 month cycles. The complexity
and frequency of block cycle updates influence support facility
ptilization and capacity rtequirements. This is a key concern in
sharing a faMMty between distinct System Program Offices. While
some high level estimates of potential utilization requirements have
been made (@“gn, the APQ-180 OFP is approximately half as complex
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Figure 4. SOF Block Cycle Update Processes

as the APG-70 OFP, and therefore may require a 50% increase in
support systems demand), the operational policies and processes
regarding the use of a shared facility still need to be worked out by
the government. Similarly, support personnel requirements for both
the OFP maintenance activity and the support facility itself have
great potential for asset leveraging (e.g., expertise and skill sets), but
this issue needs to be resolved by the System Program Offices.

The support requirements of the full weapon system must also be
considered in evaluating the support requirements of the radar.
Integration and test of the full avionics suite, as well as operational
test & evaluation, and strategies for Weapon System Integration Lab
(WSIL) support versus flight test, pose trade-offs that can influence
the scope of testing performed in the radar support facility. Table 4
outlines top-level strategies currently under consideration and
preliminary trade-offs that have already been identified.

Preliminary technical and cost trade-offs appear to favor support
strategy #1, for shared use of the F-15 APG-70 SDF for support of the
APQ-180. Ease of reconfiguration of the radar system test bench and
system availability are key technical factors in this support
approach.
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Table 4. Top Level Support

Py

Strategies and Trade-Oifs

1. |

Suppori Strategy

Trade-Ofis

Radar OFP maintenance at WR-ALG using
the F-15 SDF S/W development tools, and
sharing & radar test bench medified lo sup-
port the APC-180.

Once the radar tape is checksd ouwt in the
SDF, &t would be released for operational
testing in the WSIL or OT&E

- Shared F-15 facilities, with test bench
APQ»‘& 80 upgrad@

- oh & =-15 common LRU's, add
niciue Am{ ASGC, PIS

]

- Up grade targat generators for improved
AG s uppoit

2

- Potential leveraging of LFE APG-70

expertise.
- N@ ing of WSIL ase @LS @u nesd

F
varate [fb, DGU, BMLY

Radar OFP maintenance at WR-ALC using
the F-15 SDF SAW development tools, and
a new dedicaled radzr test bench modified

to support the APQ-180.

Avoid conflicis
demand.

on rader test bench

= Sh'” ad F-15 CDF S feciliti TS,
duplicati .'on of AP C«/@ "ad@r@ st bench
(r’*omtom, instrumentation, simulations,
gtc.), with upgrades for APG-180.

- Full radar LRU set nesded

- Upgrade target generatore for improved
AIG supp sort

- Potential leveraging of LFE APG-70

experiise.

- No sharing of WSIL assels (i.e.. nes
seperate MO, DGU, BMUX @m)

Use redar GFP development and analysis
tools in the F-15 SDF {i.e.. CDIFF & BDHAS)

Co-locaie WSIL at WR-ALC to allow optional
connection of a new radar test bench ina
full avionics system configuration, as well as
a stand-alone configuration for radar
subsystem checkout.  Fully instrumented
radar test bench for radar OFFP
development and maintenance, shared
with avionics system test.

Site andeb.unelan. option would need a
duplication of COF & IDRAS for Gunship.

- Shared F-15 CDF & IDRAS facilities,
duplication of APG-70 radar test bench
{monitors, instrumentation, simulations,
etc.), with upgrades for APQ-180.

- Full radar LRU set necded

- Upgrade target generators for improved
AJG support

- Potential leveraging of LFE APG-70

expertise if co- -located

- Sharing of WSl assets (l.e., MC, DGU,
BMLI sirm) & assuming expecied
demand is fow and any concurrent radar
festing is done using MC simulation.

Contractor maintenance & suppoit of the
APQ-180. Cumently considered a falloack
option.

- Some leveraging of existing APG-70
test assets and personnel

- Upgrade target generators for improved
Ve
AJG suppori
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Figure 5. Radar Test Bench in a Weapons System Integration Lab
Environment

The adoption of strategy #3, another favored approach, introduces
technical considerations for integration of the radar test bench
system into the WSIL and the coordination of the ownship and
environment models with sensor specific models and timelines.
Figure 5 illustrates a potential approach to the use of a radar test
bench in a full avionics system test environment.  This is considered
reasonable from a technical viewpoint (previous versions of the
radar test bench system have been used in this fashion), however
this does introduce additional engineering effort into the
development of the Gunship test and integration support facility.
Support activity loading considerations also influence resource needs
and the determination of whether a single radar test bench system
and LRU set is sufficient for supporting both the development and
subsystem test of the radar OFP, as well as the support of test
activities associated with operational test & evaluation of the full
avionics suite.
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Status of Study Recommendations

Basic radar support sysiem requirements are well understood at
this time, although top level strategies adopted by the government
will influence the full scope of techmical requirements and the
selection of an implementation approach. CDF and IDRAS capabilities
are directly applicable to support of the APQ-180 radar, aithough
additional storage capacity is required (o meet APQ-180 needs.
Radar test bench system modifications are also well understood,
although alternatives nced to be resolved based om the accessibility
of the support resources of the F-15 SDF and the strategy for the
Gunship WSIL.
Some of the target generator and instrumentation sysiem
improvemenis need further refinement, and are recommended for
further study. In addition, investigations of future Gunship flight
instrumentation  strategies are on-going and will need to be
considered in the proposal for radar sensor data instrumentation.
Based on a technical assessment, sharing of the F-15 APG-70 SDF
support systems appears to provide an atiractive, cost effective
approach to support of the APQ-180. Support process issues and

work load expectations, however, still need to be resolved before

1

such an approcach or an alternative can be adopted.
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WEAPONS TEST SQUADRON (WTS)

Code 561220D

Naval Air Warfare Center, Weapons Division
China Lake, CA 93555-6001

Head: Bob VanStee (619-939-5383)

Role: The Weapons Test Squadron Systems Support group, Code 561220D,
develops, maintains, and operates modifications to NAWCWPNS aircraft. The
Systems Support team specializes in developing and integrating modifications to the
T-39 aircraft test bed for captive flight testing.

Operational Concept: The WTS supports the T-39 aircraft test bed and modifies it
as necessary to support all types of captive flight testing. The T-39 is a quick-
maneuvering, versatile aircraft and is ideal for evaluating various test articles. A wide
variety of background clutter can be collected because of the extensive altitude range
(50 - 45,000 feet), speed (120 - 350 kias) and flight duration (up to 3 hours).

Responsibilities: The Systems Support team provides engineering and integration
support of systems onto aircratft for captive carry flight testing.

Facilities: The T-39 aircraft is configured with a mounting platform in the radome
area that will accommodate many types of seeker, fuze or radar systems. The
mounting rack is currently cleared to carry a 160-pound test article with a center of
gravity 35.8 inches forward of the fuselage station 50 bulkhead. Three cameras can
be mounted to this platform to provide a forward, 45° down and 45° port field of vision.
The radome can house articles up to 14 inches in diameter. There is one altered
radome readily available and another radome that can be altered to accommaodate the
modified configuration. The aft cabin of the aircraft can be arranged to fit 330 pounds
of instrumentation on a rack that covers 2700 in3 of space, while carrying 3
passengers and 2 pilots. The available power of the test bed includes Three Phase
Aircraft Power (115VAC, 400A, 400Hz), 1 kW Inverter (115VAC, 8.5A, 60 Hz), 3.5 kW
Converter (120VAC, 29.16A, 60 Hz) and 28 VDC (50A). Pre-routed wires from the aft
cabin area to the radome include: DC Power Cables, Digital Data Cables,
Digital/Analog Data lines, and AC Power Cable. Additional pre-routed cables include
an Aircraft Audio Cable, DC Power Cable, and AC Power Cable.

This document is approved for public release: Distribution is unlimited.
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T=39 Test Bed
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Systems Support

Weapons Test Squadron, China Lake
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Figure 1. General Cabin Layout

T-29 Test Bed
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1.0 TEST BED PURPOSE

o
£

To provide a QIUCL maneuvering, versatile aircrat for captive {ight test-
ing. The T-34 evaluating various test articles including seekers,
Z ekc. Four pro )ec{* g»asom.a may be present onboard

i R ~
¢ system evaluali

I{OW wing, twin jet air-
surized and sound-
y two Pratt and
S‘ld@ of the aft fuselage.
3 000 lbs at military

sons: an intermediate cabin area
n area contains an electronic
”’”’f ﬁ’l«*oro The aft cabin area contains
naxct to the test hardware rack, and three

e removed for additional hardware.
ning or checkouis.

The aircraft cabin
and art P cabin area
uupv‘ ent compar
the flight mgmee;; '
seats for exirq 1esi pers
Flight personnel do noi r:

A.

—r

4,0 FLIGHT SPECIFICAT

ied below in Table L

Characteristic ; maximum 51 raimiTmuwm
“Speed 11350 kies 17126 kias

Altitude 25,600-45,000 fi. || 50 feet

G’s +3.5,-10 | s

Flight Time (2t 250 kias and 25,000} ~ 3 hours e

feet altirude)

Takeoff Distance mmmmm s 4,500 feet
Landing Distance —— 6,000 feet

Max. allowable in-Flight Gress 18,265 pounds e

Weight ; ) ‘ ‘; .
Flight Hour Cost (FY-94) —’{i; $1370.00 per howr
TABLE 1.

T-39 Test Bed March 16, 1995
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The aircraft has flight capability at night and in adverse weather. However,
the T-39 is prohibited from performing spins, acrobatics, and zero or nega-
tive G continuous flight for over ten seconds.

5.0 MECHANICAL INTERFACES

Test Article: The mounting rack is currently cleared to carry a 160 Ib test article
with a center of gravity 35.8 inches forward of the ES. 50 (fuselage station)
bulkhead. Any loading configuration creating a moment less than 5,764 Ib-
in, relative to ES. 50, is acceptable. Greater loading conditions will require

further stress analysis.

The test seeker is mounted to the support frame by an adapter plate. This
plate can be quickly fabricated to mount a wide variety of test article sizes.
However, the maximum article diameter should not exceed 14 inches.

There are three video camera mount locations on the rack. These provide a
forward, 45 degree down, and 45 degree port field of vision.

MOUNTING RACK

ADAPTER PLATE

L X / CAMERA
i \ TEST ARTICLE

NOSE CONE

CAMERAS

CABLING

Figure 2. Test Article Mounting Arrangement

T-39 Test Bed March 16, 1995
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Instrumentation: The instrumentation
rack is located in the aft cabin.
Assuming the maxinium
onboard crew of 2 pilots and 4 o
passengers (180 Ibs/ persom), P~
330 pounds of equipment can be E\
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6.0 ELECTRICAL INTERFACES
A. Available Power of Testbed

1. Three Phase Aircraft Power - 115VAC, 400A, 400Hz
2.1 kW Inverter Supplies - 115VAC, 8.5A, 60Hz

3. 3.5kW Converter Supplies - 120 VAC, 29.16A, 60Hz
4. 28VDC, 50A

B. Available Power Supplies
The following power supplies are available for project use:

1. Rectifier - Chatham Electronics - Part # MS528123-1
Input: 3 phase 115VAC, 5A, 400Hz
Output: 26VDC, 55A
2. Static Inverter - Filetronics - Part # PC-15A
Input: 28VDC, 13.2A
Output: 1I5VAC, 2.17A, 400Hz
26VAC, 294, 400Hz
3. Static Inverter - Filetronics - Part # PC-15BC
Input: 28VDC, 13.2A
Output: 115VAC, 2.17A, 400Hz
26VAC, 2.94, 400Hz
4. Static Inverter - Filetronics - Part # PC-16
Input: 28VDC, 14A
Output: 115VAC, 2.17A, 60Hz
5. +5VDC Power Supply - CE Systems - Part # A-1046 (Quantity=
Input: 115VAC, 47-420Hz
Output: 5VDC, 2A
6. +15VDC Power Supply - Abbot Transistor - Part # 13227
Input: 105-125VAC, 400Hz
Output: +15VDC, 2A
-15VDC, 2A
7. £15VDC Power Supply - Abbot Transistor - Part # 13671
Input: 105-125VAC, 400Hz
Output: +15VDC, 1A
-15VDC, 1A
8. 28VDC Power Supply - Lambda Electronics - Part # LM2237
Input: 110VAC, 60Hz
Output: 28VDC, 3-5A
9. 28VDC Power Supply - PMC - Part # PXS50028Y
[nput: 110VAC, 60Hz
Output: 28VDC, 3-5A
10. 28VDC Power Supply - Transpac - Part # SR282
Input: 115VAC, 50-400Hz
Output: 28VDC, 2A

2)
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4. 4W1 - Digital/ Analog Data Lines - This cable contains 15 coaxial
cable data lines with 500 impedance. The cable uses a Deutsch con-
nector (DS07-61SY) to carry data from the test article to the equip-
ment rack where the cable splits into 26 BNC connectors (M55339/13-

00492).

5. 6W1 - Digital / Analog Data Lines - This cable contains 15 coaxial
cable data lines with 500 impedance. The cable uses 15 BNC connec-
tors (M55339/13-00492) to carry data from the test article to the
equipment rack where it terminates with 15 BNC connectors

(M55339/13-00492).

6. 8W1 - Aircraft Audio Cable - This cable is a 50Q impedance coaxial
cable which uses an aircraft audio connector (PT06A-10-6P(SR)) to
carry aircraft audio signals from the aircraft audio plug to the equip-
ment rack where it ends with a BNC connector (M55339/13-00492).

7.20W1 - AC Power Cable - This cable uses terminal lug connectors to
connect AC power from the inverter/converter rack to the test article.

At present, the cable is set up for:

One 16 AWG +120VAC line
One 16 AWG +120VAC Return line
One 16 AWG Ground line

8. 21W1 - DC Power Cable - This cable uses a connector (MS3106A24-
115) at the 28VDC power distribution box to carry 28VDC witha
maximum available current of 50A to the 1 kW inverter, where the
cable terminates with the connector (MS3106A24-1P). The cable also
carries 28VDC with a maximum available current of 25A to the test
equipment rack which uses a connector (MS3106A22-1P). If neces-
sary, the 25A circuit breaker may be increased to 50A circuit breaker,
thus providing the test equipment with 50A of 28VDC.

March 16, 1995
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The Optics Table presents images that appear to be at least several kilometers away. The
actual targets are at the focus of the collimating mirror, the heart of the Optics Table. Using the
mirror and targets the Optical Bench can perform much of the Acceptance Test Procedures. FLIR
parameters include: square wave frequency response, dynamic range, dead and noisy channels.
field of view, minimum resolvable temperature difference, geometric distortion. focusing. reticle
centering, field-of-view change time, and field-of-view alignment. We can test video tracker
performance a) on moving targets, b) with temporary or partial target obscuration. and c¢) for
transition times between tracker modes.

With our boresight target and precision periscope, we can measure FLIR-to-laser boresight
error and laser beam divergence. Parameters measured within our laser safety enclosure also
include total energy, pulse width, sidelobe energy, stabilization time, temporal stability, coding.
missing pulses, and energy stability. First, we will describe the mechanical aspects. Next we will
discuss the compact, eye-safe Optics Table design, describe the associated instrumentation, and
detail the example of boresight testing. Lastly, we will discuss possible improvements.

[I. MECHANICAL DESIGN

The contractor's test facility for the NTS was a large room with several optical tables full of
equipment, with laser safety features such as power interruption when the doors are opened. Our
space is constrained, since we wished to operate the NTS turrets in the AH-1W Weapons Software
Support Facility (WSSF). Instead of using the entire room as the laser safety enclosure, we built a
shroud around only the avionics and optical test equipment. Our testing mostly supports flight
tests, so we need to quickly and safely transport the turrets between the airframe and the Optics
Table. Moreover, boresight between the turret mounting surfaces and the sensor lines of sight
need to be accurately determined. These conflicting needs were harmonized in the mechanical
design.

The main structural component material for the Optical Bench is 4" by 4" by 1/4"-wall
6061-T6 aluminum tubing. The choice of aluminum versus steel was for low weight. This and
other materials--mostly aluminum--were welded to form a)the Turret Cart, and b)the Optics Table
(collimator). The Optics Table holds the optical test equipment, and the Turret Cart holds the
avionics as it is tested. The two platforms accurately dock to one another with a three-point
kinematic interface shown in figure 2.

The Turret Cart provides a stable mounting platform for the NTS turret. It rigidly docks to
the Optics Table using a three-point, kinematic interface. This interface eliminates the need to
readjust the cart each time it is docked. The carts' rear wheels and lower framework semi-detach
and remain on the ground, relieving the interface of their weight. Releasing a detente, the cart
handle slides to stow under the cart. The mount for the turret, shown in figure 3, is adjustable in
roll, pitch and yaw to align the turret mount to the Optics Table. The mounting bolt interface is
identical to the aircraft.
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The cart rolls out to the AH-1W helicopter to transport the turret. The 7" casters
accommodate rough tarmac and hangar floors. The rear casters rotate 360 degrees, while the front
two are fixed forward. All four wheels have friction brakes, while the rear two lock at various
angles. The rear wheels are mounted to a beam that pivots about its center for traversing surfaces
that arcn't flat. The weight of the cart is centercd, both with and without the turret, for safety.

The Turret Cart includes a shroud (light-tight cover). The NTS turret and the test optics are
enclosed by two mating shrouds to provide light-tight protection for the operator during laser tests.
A pliable material and drawstring is cinched tight about the operators' eyepiece. The forward end
of the cart shroud has a circular opening that mates a similar opening on the Optics Table shroud
when the Turret Cart and Optics Table are in their docked position. The seal between the two
shrouds is a cylindrical piece of resilient foam encompassing the 14" openings.

The Optics Table, shown in figure 4, is a tri-leg device with triangular structural features
of 4" tube. This is rigid and stable with low weight. Each leg can be adjusted in height, including
leveling of the Optics Table in its initial laboratory/shipboard installation. The leg adjustment is
attached to a longitudinal 1/2" steel footplate that fastens the Optics Table to the floor. Each
footplate has a spherical freedom of movement of 7 degrees to compensate for irregular floors.
With the Optics Table stationary, a single operator can push the Turret Cart into the kinematic
docking interface to couple the platforms.
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Figure 4. Optics Table
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The Optics Table top is 1/2" aluminum 6061-T6 plate that has been machined to cnsure
perpendicularity and parallelism to its framework. The top is drilled and tapped in 5 places to
accept a 2' by 6" honeycomb optical breadboard from Newport Research. Five concentrically
threaded fasteners (Newport's microlock tiedowns) are used to independently level the breadboard.
The breadboard is offset to one side of the table to leave room for electrical connections through the
table surface. This leaves the shroud structure clear of connectors except where necessary for laser
safety interlocks. The electrical connections pass through a machined port in one of the 4" by 4"
aluminum square tubes, and through the 1/2" aluminum top. A sub-panel with the appropriate
connectors is attached to the bottom of the square tube to provide light-tight electronic connection
to the Optics Table test gear. A similar light-tight connection port is provided at the aft end of the
Turret Cart to provide electronic interface from the turret to related avionics and test equipment.

The Optics Table side of the kinematic interface has a 40001b capability cam action lever
latch that can be adjusted forward and aft and operated by one person to dock/connect the Turret
Cart to the Optics Table. The latch mates to a hook on the cart.

The Optics Table shroud covers the entire top of the table. The shrouds for both the Optics
Table and Turret Cart are made of 1/8" 6061-T6 aluminum sheet to accommodate frequent removal
and installation. and reinforced to allow test gear to rest on their top surfaces. There is a light-tight
access port in the forward top side of the Optics Table shroud. This port allows the
Technician/Engineer to change optical targets without removing the entire shroud. The compact.
rigid, platform design will allow a)eye-safe testing in a small package, b)safe transport of the NTS
turret, and ¢)convenient, accurate alignment between the turret mounting interface and the Optics

Table.

[1I. OPTICS DESIGN

The sensors on the NTS turret look through the 14" circular opening in the shrouds
described above. These sensors are tested with just one 8" collimator aperture. This is
accomplished with a precision periscope. Figure 5 shows a simulation of the laser beam path
through the Optics Table, with and without the periscope. The periscope allows a smaller aperture
to be shifted to within the largest aperture, without altering the direction of the rays. The periscope
relieves the tight collimator defocus tolerance associated with boresight alignments between
apertures spaced even a few inches apart. The parabolic mirror also aids in these measurements
since it has no wavelength dispersion. Without the dispersion associated with refractive
collimators, all wavelengths focus at the same focal point. The major drawback of reflective optics
is the narrow field of view.

Key trade-off factors for a collimator design include the focal length of the primary mirror, the
number of expensive fold mirrors needed, the amount of floor space available, and the blackbody
aperture size. If the focal length is too long, the blackbody source and floorspace become quite
large. The blackbody is usually shipped away for calibration. Our design has no large fold flats,
but a relatively short focal length mirror. This was largely to avoid the expense of large fold flats
and large blackbodies, and their contributions to the aberration and thermal error budgets.

Using an on-axis, parabolic, 16-inch-diameter, amateur-astronomy mirror and mount saved us
time and money, compared to buying a smaller (8-inch) off-axis mirror.
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IV INSTRUMENTATION AND CALIBRATION

A block diagram of the Optical Bench is shown in Figure 6. Laser measurements use the
radiometer or the laser beam analyzer, while FLIR tests use the blackbody.

The radiometer tests the following laser parameters: pulsewidth, stabilization time. temporal
stability, coding, missing pulses, energy stability, and output pulse energy. We prefer calonmetric
radiometers which feature calibration by an electrical substitution heater. A standard voltmeter
thereby becomes the immediate calibration reference. The slow thermopile detectors used in most
calorimeters must be supplemented with a fast silicon photodiode to support our many test
requirements. The model DGX-RP from Ophir was found to provide all of these capabilities in
one compact radiometer with an RS-232 output.

The laser beam analyzer tests beam divergence, sidelobes (part of beam profile). and FLIR-
to-laser boresight. The CCD camera should be selected for wide dynamic range and compatibility
with the selected beam analyzer.

Commercial blackbody sources have short calibration intervals. Thus a vendor with nearby
calibration facilities is helpful. The tests performed using the blackbody include: Square Wave
Frequency Response(SWFR), dynamic range, dead/noisy channels, field of view, Minimum
Resolvable Temperature Difference (MRTD), distortion, focusing range, moving target track,
predictor with obscuration, transition times between modes and fields of view, and reticle
centering. Tracking tests use a small pinhole target which travels around a circle of two degree
diameter in the turrets' field of regard (see Figure 7). The motor used for this test is a simple
synchronous clock motor for accurate rotation rate. This limits the tests to a single speed, but costs
less than variable drives.

All other FLIR tests use simple target masks such as shown in figure 8. We decided to use
a blackbody target format only four inches square. This requires the interchanging of targets. as
opposed to using an array of targets. However, reducing the collimator field of view gives us
more confidence in the target thermal uniformity and helps reduce the collimator aberrations.

Figure 7. Rotating Target
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Figure 8. Simple Target Mask

V. EXAMPLE: BORESIGHT

As an example, we will describe the FLIR-to-laser boresight test. First, we insert the
periscope so it shifts the laser aperture into the middle of the FLIR aperture, which is large enough
to see around the periscope. Then we put a square boresight target with fiducials at the focus, cool
the FLIR, lock the autotracker onto the boresight target, fire the laser, and sample the laser spot
with the CCD camera and laser beam analyzer.

Thus the CCD video shows the centering of the laser spot on the square target the FLIR is
autotracking. Figure 9 shows the focal plane with the boresight target installed, and the CCD
camera near the blackbody. The red diode laser at the top of the target plate illuminates the target.
An iris adjusts for laser intensity, since the camera AGC does not follow the short pulses correctly.
The laser beam analyzer processes the CCD video image to determine the offset between the laser
spot image and the square target. Dividing the offset by the spacing between the fiducials, and
multiplying by the known angle between the fiducials yields the angular value of the boresight
error. Measuring between centers of symmetrical objects (like our fiducials) eliminates the variable
of setting a threshold for determining where the edge occurs: which shade of gray is on the white
side of the edge? With the fiducials, a pixel centered between edges can more accurately be called a
center, so linearity of the camera/digitizer response curve is less critical.
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Figure 9. Boresight Target in Focal Plane

VI. FUTURE GROWTH AND CONCLUSION

Several ways to improve the Optical Bench have been suggested.

First, we could support more of the ATP tests by providing the ability to test a larger field of view.
This could be accomplished with the addition of a steering mirror to move the image of the test
targets around in the field of view of the avionics. Another suggested improvement is an
automated focus monitor to avoid requiring engineering support of the Optical Bench to
periodically check the focus with the ronchi grating. This could extend diffraction-limited
performance to the visible spectrum.

The Optical Bench is compact enough to be used in virtually any avionics development
facility. The field of view of the collimation optics is 3 by 2 degrees (vertical/azimuth). The
Optical Bench design can accommodate upgrades such as complex moving targets (in two axes),
an infrared scene generator (of tanks, planes, flares, etc.), or a laser countermeasure source.

Other upgrades not included in this unit are a) a coil of optical fiber (calibrated in length) to
provide a time-of-flight delay to test the laser rangefinder, and b) diode sources in the spectral band
of the rangefinder to test the first and last pulse logic, or to test laser spot tracker systems.

In short the flexibility of this design can provide verification and validation of production
hardware assets as well as a research and design performance characterization tool, all at a
relatively modest cost.
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NETWORK SWITCHING IN THE
VIRTUAL TEST STATION (VTS)

Harold Dean
Robert Norton
Science Applications International Corporation
Dayton, Ohio, 45432

Abstract

The development of the Virtual Test Station (VTS) by the Avionics Logistics Branch of Wright
Laboratories (WL/AAAF) and SAIC has spawned the creation of a new hardware system for
switching the avionics and network signals that move between resources in the VTS. This new
device is called the Modular Switching System (MSS) and makes use of state-of-the-art cross-
point and analog switch technologies to switch a wide variety of signal types ranging from low
frequency analog signals to digital signals up to 600 Mbps. The MSS is comprised of a base
Modular Switching Unit (MSU) and up to 32 Modular Communication Plug-ins (MCPs). The
system embodies WL/AAAF’s fundamental design philosophy of modularity, flexibility,
reconfigurability, maintainability, and low cost. The MSS does not represent a radical change in
network switching technology. Rather, it is the integration of several existing and emerging
technologies in a way that brings new flexibility and capability to Integration Support Facilities
(ISFs) and other organizations with a large variety of high performance computing resources that
can benefit from the ability to rapidly change configurations. This paper describes the operation
and design of the MSS and how it can be applied in various switching applications.

Background

Research by WL/AAAF, under the Embedded Computer Resources Support Improvement
Program (ESIP) program, has been focused on simulator architecture design concepts.  The
principal focus has been on the insertion of new technologies to enable the modularization of test
station design. A modular approach provides the test engineer a greater degree of flexibility to
manage test station resources within the ISF. The increased flexibility enhances automated
avionics test and reduces the cost of test station development and maintenance. The benefits of
a modular concept were successfully demonstrated by the Advanced Multi-Purpose Support
Environment (AMPSE), a modular, reconfigurable test station developed by WL/AAAF.

The traditional approach to avionics support was to build a dedicated test station for each
avionics subsystem and its embedded computer. A mainframe computer was an integral
component of each test station. There was little or no cross utilization of avionics or computer
resources on different test stations. As modem aircraft systems evolved into a distributed
architecture of multiple avionics subsystems, the line replaceable unit (LRU) count significantly
increased and so did the effort to support avionics test. As a result, test station development and
maintenance costs soared in an effort to provide an integrated test environment. A significant
part of the test station cost was the redundant sets of avionics equipment required to build
multiple test stations, as well as the simulator development for each station. The principal
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design goal of the AMPSE architecture was to allocate the simulation, previously hosted on a
mainframe computer, across a distributed network of parallel processing resources. The rest of
the test station simulation functionality was also partitioned and allocated to individual modular
components in the AMPSE. Communication among the modular, distributed components was
supported by the Shared Memory Architeciure Real-Time Network (SMARTNet), a real-time
data communications network using reflective memory. In addition, each processing element
used a common, modular software executive, referred to as the Distributed Ada Real-Time
Executive (DARTE). The modularity of the AMPSE technology provided the test engineer with
a more efficient method of developing, testing, and maintaining avionics software. Although the
AMPSE architecture is modular, avionics resources remained dedicated to specific test
configurations. To fully capitalize on the modularity of the AMPSE architecture, WL/AAAF
created the VTS. In the VTS, all of the communication signals from the modular resources are
routed to the MSS (Figure 1) where they can be connected under remote control to form a variety
of “virtual” test stations.

Computational Computational Avionics Avionics Avionics
Resource Resource Resource Resource Resource
Computational \ ~ v # Avionics
Resource S - & : Resource
Computational /4 Avionics
Resource | Rescurce
Computational // Avionics
Resource External Resource
Controller
Ethernet

Figure 1. MSS in the VTS Concept

Concept

The MSS is a software controlled. integrated data switching system. It is composed of the
Modular Switching Unit (MSU) and the Modular Communications Plug-ins (MCPs). The MSU
consists of the system chassis and the switching components. The MCPs customize the system
to switch a particular configuration of signals. The Modular Switching Unit with a complement
of Modular Communications Plug-ins, forms the signal switching hardware component. The
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MSS is designed to be remotely controlled from a workstation or other computer.
Communications between the MSS and the computer directing the switching is handled over
Ethernet.

The MSS hardware architecture is specifically designed to operate in a real-time simulation
environment. The modular architecture supports the switching of both analog and digital signal *
formats. The MSS switching topologies employ what is commonly referred to as “circuit
switching” versus the “packet switching” methods used in data communications. Since the MSS
physically switches the transmission media, the delays associated with receiving and re-
transmitting packets are avoided. The MSS design avoids the expense of custom semiconductor
development by using the same semiconductor technology being applied to the emerging
communications standards such as Fiber Channel, the Synchronous Optical Network (SONET),
and the Asynchronous Transfer Mode (ATM). The MSS concept optimizes the sharing of
resources and eliminates the costly expense of building/configuring multiple test stations. The
development of the MSS is the enabling hardware technology required to implement the VTS
concept.

Switch Requirements

The VTS requirements levied on the MSS are formidable. The switch must handle signal
frequency bandwidths from DC to 200 Mbps and voltages from millivolts to at least 28 volts. In
order to handle future data networks, frequency bandwidth growth capacity to 600 Mbps is also
required.

The signal types are varied and cover all aircraft signal types and a variety of special signal types
needed by the ISF. The most obvious signal type necessary for avionics system testing is MIL-
STD-1553B. This is the most common aircraft data bus. The switching system must also
switch any variants of the standard 1553B bus, such as the F-16 Weapons Bus. The switching
system must provide switching for AC and DC analog voltages in various polarities and levels.
The switching system must switch all of the common avionics discrete configurations: 28
volt/ground, open/ground, and 28 volt/open. The switch must be versatile enough to handle any
avionics signals likely to be available in the near future. And last, but certainly not least, the
switch must prevent interconnection of incompatible signals to prevent damage to the avionics
and test equipment.

The special signals needed in the test facility are primarily related to the interconnection of the
computer systems and the avionics under test. The most versatile arrangement would allow any
computing resource to be flexibly connected to any avionics resource. Having flexible
configurability optimizes the use of expensive resources by allowing multiple OFP engineers to
run simultaneous testing if adequate resources are available. Configurability also enhances testing
reliability and schedule adherence by routing around downed equipment. The primary signal
types related to the computer configuration are high performance data bus protocols. These
range from RS-232 at 300 baud to fiber optic reflective memory systems with signals in the 200
Mbps range. Additionally, Ethernet or Token Ring networks may require switching to support
specific test requirements.
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Approach

The MSS has two primary design drivers: signal frequency and signal topology. The switch
design has to cover the frequency range from DC to 600 MHz. There are a variety of analog
switches that cover the DC to 2 MHz range. These are medium density type components with
sixteen to thirty-two swiiches per integrated circuit. There are high frequency analog switch
components which extends the range to 200 MHz. However, these are low density circuits with
one or two switches per component. RF style switches exist which can handle 600 MHz to 1.2
GHz signals, but these need to be tuned to specific bands and they are very low density
components, one signal per module, with limited expansion capability. Finally, there are a
variety of Emitter Coupled Logic (ECL) cross-point switches being developed for the
telecommunications industry. These are high density switching components with an entire 32 x
32 switching mairix in a single integrated circuit. They handle the frequency range from DC to
over 1.2 GHz. and some units provides signals to support expansion.

The cross-point switches satisfied the frequency requirements. However, the signal topology
requirements were still an issue. The potential signals can be grouped into two basic, electrically
incompatible, signal topologies: bi-directional multi-drop signals and unidirectional point-to-point
signals. The bi-directional, multi-drop topology includes signal types like MIL-STD-15538 and
Ethernet and is characterized by data that can flow in either direction on the single transfer cable.
The fact that data flows in both directions on the single wire prevents any kind of simple
amplification or buffering. The unidirectional, point-to-point signal topology includes signal
types like the fiber optic reflective memory data signals, synchro signals, analog signals, and
avionics discrete signals. This topology is characterized by data that always flows from a single
source to one or more desiinations. This type of signal can be easily amplified or buffered and
only needs an electrical signal conversion to be compatible with the crosspoint switch
component. There is no single switch component type which is ideal for both topologies. The
simplest way to handle both signal types is to use both analog switches for the bi-directional
signals and crosspoint switches for the uni-directional signals. The design challengs was to find a
method to package both switch types in a format which was compact, easy fo use, and
expandable.

The design concept for the MSS is to provide a processor controlled family of switching and
signal conversion modules which can be installed into the MSS chassis, in any configuration, to
suit individual test facility requirements. The MSS is composed of a dedicated custom MSS
chassis, a COTS single board computer, a family of switch boards, and a family of Modular
Communication Plug-ins (signal personality modules). The swiich boards and MCPs can be
installed in various configurations to meet the specific needs of the test facility. Multiple MSS
chassis can also be interconnected to form large switching arrays. The MSS firmware provides an
auto-configure capability which reads the configuration of all switch and MCP modules and
monitors all switch commands for safe electrical operation. The firmware ensures that only
compatible signal types are interconnected.

148




Cf['.:.“‘.'.".'.".‘.\:BEr

ue
(]
113
o
88
H41
i!
o
38
U
Db 8 | 8
(3
o | [
.
R
] o2
il °3
It
= 32
o 6 S8I R oo | wnom B uiso [ mearo | wsto fuiom LSO
Ry 3 18530 16538 16598 18838 | 18588 18638
e [N Mo wep | P Vice
2
bedd | o
sl 1 {130
o
Hod A |
EL: 38
‘Hee
CHAR ]
I3 143
= =8

Single SMARTNet-2 64x64 32 Line 8 Line  Mil-Std-1553B Empty
Board MCPs Crosspoint Crosspoint Linear MCPs MCP
Computer Switch Switch Switch Location

Expanders

Figure 2. Modular Switching System

The MSS chassis is a nineteen inch, rack mount, Eurocard style chassis. Figure 2 shows an
example of an MSS chassis with one potential card configuration. This example is configured to
switch both SMARTNet-2 and MIL-STD-1553B signals. The chassis provides mounting space
for one 6u COTS VME, single board computer; up to four 6u x 220mm switch modules; and up
to thirty two 3u x 220mm MCP modules. The chassis can be used as a stand-alone switcher or
connected with others to form large interoperable switch arrays. The chassis has a custom
motherboard with slot 1 dedicated to the single board computer. Motherboard slots 2 through 9
and 14 through 21 are configured to hold two banks of 3u MCP modules. Motherboard slots 10
through 13 are configured to hold 6u switching modules. The motherboard provides the wiring to
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form two, electrically isolated, signal switching arrays. Each MCP location is wired for one
differential signal pair which can be used for bi-directional signal transfer to the switch array.
Each MCP location is also wired for two differential output signal pairs and two differential
input signal pairs which are separately wired to the switch array for uni-directional signal
transfer. The fact that the interconnect wiring is permanenily available in the chassis backplane
vastly simplifies the switching system components. Switch modules and MCPs are designed to
only connect electrically io the compatible wiring array, thus preventing electrical damage. Since
all the positions are wired the same, with the exception of addressing codes, there is onlv one
configuration constraint. The single constraint is that the system must have a switch module for
any signal array that has MCPs connected. Providing wiring for both arrays produced a lot of
signals in the backplane. There are almost 600 signals routed to the four 6u swiich assembly
positions. The switch modules were purposely located in the center of the chassis to allow
signals to be routed from both sides. This improves the electrical isolation and minimizes
crosstalk. The chassis provides global addressing for the MCPs and switch assemblies so there
are no address jumpers to set. MCP modules get their address from the slot in which they are
installed. All MCP locations provide identical capabilities.

The embedded controller is a COTS VME single board computer (SBC) with built-in Ethernet.
The operating code (firmaware) is stored in ROM or can be optionally downloaded from an
external host computer. The SBC conirols the switching system over a modified VME control
bus. It accesses all switch modules and MCPs as A16, D16 VME slave modules. The SBC is
the sole bus master and no interrupts are required except the VME BERR. Each switch module
and MCP location has a hardwired backplane address and is required to have 2 status register at
the base address for the board. By interrogating the status register for each location, the
embedded controller determines the switch and MCP configuration for the MSS. The
configuration and operating rules for all MCP and switch module types are contained in the
firmware. During initialization, the firmware autoconfigures the run-time software to match the
hardware configuration. From that point on, the firmware will test each comnection command
against the stored rules to validate legal connections. Requested connections which violate the
rules are reported back to the external system directing the MSS. When multiple chassis are
inter-connected by the expansion ports, the firmware from each unit communicates with all
connected units to coordinate and test inter-unit switching. The user only needs to specify
connections by unit number and channel to any unit in the array and the connection will be made.

The switching modules provide controlled switching of selected signals. Since bi-directional
signals appear on physically separate pins in the 6u connector from the single ended signal types,
switch modules are designed to optimally switch individual types. Since all signals are available
at each location, there are no constraints on switch module locations. All switch modules are
designed with a status register located at the boards base address. This status register contains a
type code field which is assigned io each switch design. By reading the status register and
decoding the type code, the firmware can recognize and control each switch module in any of the
four locations. '
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Figure 3. MSS Crosspoint Expansion Example

There are currently three switch modules defined: a 64x64 crosspoint switch module for
switching single ended signals, a 32 line crosspoint expansion module for passing single ended
signals between MSS chassis for switch array expansion, and an 8 line linear switch module for
switching bi-directional signals. The 64x64 crosspoint switch module is electrically connected to
the single ended signals from the chassis motherboard. This one module in a chassis with thirty-
two single ended MCP modules provides all the switching capacity needed to connect any
available input to any available output. The 32 line crosspoint expander connects multiple MSS
chassis together (Figure 3) such that any of the single ended inputs in any chassis can be
connected to the single ended outputs in any other chassis. The expander board provides for the
selection of up to thirty-two signals from the sixty-four available signals in a chassis. The 32 line
expanders are used to connect the chassis in a ring topology network. Depending upon cable
length, from six to eight chassis may be connected into a single ring. If more than thirty-two
signals must be passed between any two nodes in the ring, additional expander boards can be
added in parallel to increase the number of lines between units, to a maximum of three expander
boards in a single chassis. The 8 line linear switch module is used primarily to provided MIL-
STD-1553B switching. The 8 line linear switch board provides eight provided MIL-STD-1553B
busses and can connect any or all of the MCP modules in the chassis to any specified bus
configuration. If more than eight busses are necessary, additional 8 line linear switch boards can
be installed. The 8 line linear switch board contains built-in expansion capability to interconnect
multiple chassis. The expansion chassis can connect any of their MIL-STD-1553B MCP
modules to the defined busses.

MCPs can be thought of as personality modules used to electrically convert signals into a form

compatible with the switching modules. They also provide a connector mount for connectors
appropriate to the signal type. Each type of signal being switched must have an MCP. There
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are currently the following MCP types: provided MIL-STD-1553B, F16 Weapons Bus, and
SMARTNet-2. Anticipated MCP types for future development include: Ethernet, Synchro
Input, Synchro Output, 16 Channel Analog Input, 16 Channel Analog Output, Avionics Discrete
Input, and Avionics Discrete Output.

Configuration Examples

The flexibility of the MSS modular design provides total freedom to mix and maich MCP and
switch modules in an IMSS. There is no one “right” configuration. The basic approach to
configuring the switch sysiem is to analyze the signals to be switched, select the appropriate
MCP modules, select the switch modules needed for the MCP types, assign boards to chassis,
and connect multiple chassis for large switch arrays. Although there is no MSS requirement to
group signals in any particular manner, a large test facility needing multiple units can maximize
the number of possible configurations by grouping like signals in same chassis to minimize cable
requirements and propagation delays. The following examples show potential configurations.
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Example number one (Figure 4) shows a configuration for a facility with the need to switch a
large number of MIL-STD-1553B networks as part of its test requirements. This example is
configured to handle at least thirty-two MIL-STD-1553B terminals. The configuration has three
8-line linear switch modules. Each 8-line linear switch can provide eight networks with any
combination of MCP connections. Two 8-line linear switches can handle the complete switching
needs of a single chassis by providing the capacity to have sixteen networks with two terminals
each. The third 8-line linear switch in the configuration is installed on the assumption that at
least one more MSS with MIL-STD-1553B MCPs comprises the test facility configuration. The
third switch can be connected via the expander ports on the front panel to a remote MSS to
provide up to eight MIL-STD-1553B networks which are shared between the units. The third 8-
line linear switch can be omitted from the system if no other MSS has MIL-STD-1553B MCPs.
Conversely, a forth 8-line linear switch can be installed if more than eight networks must be
shared.
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Example number two shows the poiential configurations to handle reflective memory networks.
Figure 5 shows a configuration which can provide all the possible switching connections to
handle up to thirty-two SMARTNet-2 reflective memory interfaces into any number of
networks. In this case the only switching component needed is the 64x64 crosspoint switch.
Due to the physical size and cost of the switching components in the design, the 64x64
crosspoint switch was not able to include a built-in expansion capability. Expanding the system
to incorporate reflective memories beyond thirty-two (Figure 6) simply adds 32 line crosspoint
expanders to the MSS with cables between the units. The number of expanders is a function of
the number of units 2nd the logic with which the MCPs are assigned to the chassis. If the units

are attached to MSSs such that most networks are configured inside a common chassis, then one
expander may be all that is necessary. More expanders may be needed if the physical
configurations are not optimum. In any event, the firmware will report when a potential
configuration exceeds the available expansion capacity. The user has the option of allocating
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specific expansion lines as he chooses or allowing the optimizing router in firmware to allocate
expansion lines for maximum routability.

Summary

The MSS affords the test engineer the flexibility to support efficient management of physical
resources as a set of virtual components. This flexibility provides an automated reconfigurable

ISF.

The modular design of the MSS is scaleable for the addition of new resources to an ISF. New
resource types, varied in format and protocol, can be accommodated with additional MCP
module designs. Thus, the MSS modularity provides the expansion capability necessary to
support growth in avionics test requirements. As simulation processing requirements grow to
improve avionics/environment modeling fidelity, data throughput requirements promise to
increase. The wideband design of the MSU is poised to handle this increased demand, as well.
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The Digital Architecture Simulator (DAS) Development Effort

Denice S. Jacobs

Avionics Directorate
Wright Laboratory
Wright Patterson Air Force Base, OH 45433-7301
Phone: (513)255-2766 ~ Fax: (513) 476-4746

Abstract

The Digital Architecture Simulator (DAS) is an extremely flexible computer architecture simu-
lator which characterizes processor and bus loading effects for any given digital system architec-
ture. A digital architecture is defined as any system which consists of either homogenous or het-
erogeneous digital elements (DEs) that execute digital processes (i.e., non-analog operations) in a
multiprocessing, multiprogramming environment. The DAS operates as a black box representa-
tion of a given digital architecture with respect to time, DAS(t), whereby it accepts predefined
DE. network, and process characteristics at time zero, simulates the operation of the architecture
as a function of time, and outputs the state of the architecture at user-defined check point(s).

The main objective of this project was to provide an invaluable systems engineering tool which
simulated the real-time system performance of any given digital architecture. The need for this
unique performance trade-off capability arose after severe cost overruns and schedule slips were
incurred on a major integration effort which involved multiple state-of-the-art Very High Speed
Integrated Circuit (VHSIC) signal/data processors and 150,000 lines of real-time software and
firmware code. Without this tool, the developer was unable to predict severe operational defi-
ciencies (e.g., system throughput latencies, processor lockouts, and bus contention problems)
which unexpectedly surfaced during system integration and test. Hence, it is believed significant
payoffs can be obtained when using the DAS during the design phase of any digital architecture
development effort, especially when there is no known tool in existence which accomplishes this
type of “first look™ high level systems analysis with such ease-of-use and design flexibility.

The DAS design consists of four distinct Ada packages which are used to build and execute the
subject architecture in a given time period. The different modeling features include:

e Bus contention algorithms such as Least Recently Used (LRU), First Come-First Serve
(FCFS), and Static Priority;

e DE process contention algorithms such as Preemptive (interrupt driven), FCFS, and Static
Priority;

e Databus transmissions such as packet (serial) and word (parallel) formats;

e Bus direction protocols such as simplex, half-duplex, and full-duplex;

¢ Input/output (I0) message protocols such as sequential and update rate;

e Bus period specifications (secs/bit);

e Process execution times, null processing times, and context switching (sec);

e Interconnection network topologies using dedicated (static) links and common (shared)
buses; and

e An unbounded number of DEs, processes, and buses.

157




The DAS was specifically written in Ada for ease of code readability and maintainability. In
addition, the Ada packages were intentionally designed as separate entities to handle special I/O
requirements and different databases which define the hardware characteristics, the process
characteristics, and the simulation start condition. Several test cases were executed and carefully
scrutinized for accuracy. The simulation results appear to represent actual system performance
and highlight expected performance deficiencies such as process starvation, process deadlock,
and bus contention problems. Hence, the DAS has successfully met the objectives of this effort.

Introduction

So what exactly is a ‘DAS’? Well, in general terms, it is an extremely flexible computer
architecture simulator which characterizes processor and bus loading effects for any given digital
system architecture. A digital architecture is defined as any system which consists of either
homogenous or heterogeneous DEs which execute digital processes (i.e., non-analog operations)
in a multiprocessing, multiprogramming environment. The DAS basically operates as a black
box representation of a given architecture with respect to time, DAS(t), whereby it accepts
predefined DE, network, and process characteristics at time zero, DAS(tO); simulates the real-

time operation of timed DE and Input/Output (I0) events for time “n” duration, DAS(t,); and

outputs the “state” of the architecture at user-defined checkpoint(s) which are fixed delta time
lengths, Atg, such that YAt <ty. A top level block diagram is provided in Figure 1.

................................................................................

nitial | DAS(®) . Periodic
Condition | ¢ =g Execute t=Atg, tp Outputs
at » > —  at
DAS(tp) | Event @t . DAS(At)
: =1 pext event . and

DAS(ty)

Figure 1. DAS Top Level Block Diagram

Background

There were three key requirements placed upon the DAS earlier in the design phase of the effort.
First, the DAS had to be extremely flexible in terms of its ability to characterize a wide variety of
DE and network configurations which accurately model any type of multiprocessing environ-
ment. Secondly, the DAS had to implement several different processing protocols and multiple
process relationships which realistically simulate any type of multiprogromming environment.
And lastly, the DAS had to be written in a language such that it would be clearly understood,
readily implemented, and easily maintained for future enhancements. Consequently, the
following architecture/processing features and programming language were thoroughly
researched, evaluated, and subsequently implemented in the DAS design.

Networlks

The first task was to investigate the different types of network topologies required to model two
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or more DEs operating in a multiprocessing environment.! There are three basic types of
networks, namely, static, common, and redundant networks, which readily meet this
requirement. A static network is defined as one which supports “n” bus connections from any
DE to “n” different DEs through discrete bus lines (i.e., any given DE can connect to one or more
DEs, provided the bus lines do not connect to the same DE twice). Consequently, a static
network does not permit any DE to connect to itself or to others more than once. Example static
networks are shown in Figure 2.
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Figure 2. Static Network Topologies

The second bus configuration type is the common or “shared” network topology. As the name
implies, each bus line is shared between three or more DEs such that each DE could control the
bus based upon the bus contention algorithm for that particular network. As in the case with the
static network, the common network does not permit multiple connections to the same DE. An
example of a common network is provided in Figure 3.

OO0

Figure 3. Common Bus Configuration

And finally, the redundant or “backup” network protocol permits two or more bus links between
two or more DEs, which applies to both common and static network topologies. Example
configurations of redundant networks are provided in Figure 4.

O==0 i

a) Multiple Link Connections b) Multiple Common Bus Connections

Figure 4. Redundant Network Configurations
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Data Transfer

The second task was to identify the different rules for data transfer over any given network,

namely, simplex, half-duplex, and full-duplex communications.2 Simplex communication
permits data transfer in only one direction on the bus. Consequently, this type of data transfer
could only be implemented on a static or redundant static network where a dedicated bus exists
between two DEs. Half-duplex communication permits data transfer in both directions on the
bus, but not simultaneously. This protocol could be readily implemented on all three network
types. Lastly, full-duplex communication permits simultaneous data transfer in both directions
on the bus. Obviously, this protocol would only apply to a static or redundant static network
since common bus networks cannot support simultaneous bus operations.

Another area of investigation addressed two types of data transmissions, parallel (word) and
serial (paciket) formats, which are traditionally implemented in the subject networks. The
parallel message transmission, which consists of one or more data words (i.., “x” bits per clock
cycle), may equal or exceed the given bus size. However, should the message exceed the bus
size, the message is uninterruptable and therefore, the “sending” DE must complete the message
transfer. The serial message transmission, on the other hand, consists of one or more data
packets (i.e., “y” bits per “y” bus cycles), which equal or exceed the given bus size. The key
difference with this format, though, is that higher priority messages can “take over” the network
before the original message is complete.

Bus_Protocols

The third task was to evaluate the appropriate bus contention algorithms which execute on the

subject networks.3 There were three bus contention algorithms selected: First Come-First
Serve (FCFS), Static Priority, and Least Recently Used (LRU). The FCFS algorithm transfers
the first available bus message, regardless of DE priority or recent usage, on any network
topology with any type of data transfer protocol. Consequently, in the case where DEs have to
share a bus [i.e., (redundant) common networks or half-duplex (redundant) static networks], this
algorithm could easily block a slower message-producing DE. The Static Priority algorithm
transfers the highest priority bus message, which is assigned the priority of the “source” or
sending DE, on any network topology with any type of data transfer protocol. Similar to the
previous case, a lower-priority DE could run the risk of being locked out when it competes with
higher priority DEs on a shared bus network. The last bus contention algorithm is LRU which
permits the least recently used DE to get first access to the shared bus network, and it too can be
used on any network topology with any type of data transfer protocol. Of all three protocols, this
is the fairest bus contention algorithm; however, it may not be appropriate for every application,
especially for higher priority processing requirements.

Process Definition

The fourth task was to define the term “process” as it pertained to a multiprogramming environ-

ment.4 A process is defined as either a software, hardware, or firmware entity which performs
a unique digital function in any given DE for a finite period of time. When a process ends, it
may produce up to three types of external stimuli to other processes, including itself, which
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represent the following process communication events: 1) an infinite loop; 2) program call; and
3) data notification. In the first case, a process “P1” may signal itself, thereby representing an
infinite loop program which runs continually as a background operation. In the second case, two
processes “P1” and “P3”, may represent a main program which calls to a subprogram, process
“P2”. And in the last case, process “P1” may notify or signal another process “P2” when data is
available. In summary, every process can transmit and receive an unbounded number of stimuli
to and from other processes, but only one signal interface may exist between the same process or
two different processes. Furthermore, all inputs need to be received before a process can begin
executing. Examples of process communications are shown in Figure 5.

Main Program

KEY

Stimulus: —___° \ Subprogram
Process: O
Om O

a) Infinite Loop b) Program Call ¢) Signal/Notify

Figure 5. Types of Process Communications

Processing Protocols

The fifth task was to select several processing protocols which accurately modeled a
multiprogramming environment, namely, FCFS, Static Priority, and Preemptive processing

protocols.5 Similar to the FCFS and Static Priority algorithms described earlier in the Bus
Protocols Section, a given DE operates on the first available process based upon the FCFS
algorithm, and the highest priority process based upon the Static Priority algorithm. Both
algorithms are non-intrusive, meaning they do not interrupt the current running process in the
given DE. The Preemptive algorithm, on the other hand, can interrupt a current running process
if it has a higher priority (i.e., it models an interrupt-driven DE). Consequently, this algorithm,
as well as the Static Priority algorithm, can potentially lock out lower priority process(es). The
corresponding process state diagram is provided in Figure 6.
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1O Queues

The sixth task was to identify two different types of 10 queues: The sequential and update

queue algorithms.6 The sequential queue algorithm simply maintains all of the input “signal”
messages in memory which are received from one or more processes, thereby keeping a history
of all current and past communication messages. As a result, the sequential algorithm queue
models an unbounded circular IO queue which forces the processes to remain “in sync” with one
another throughout the passage of time. With respect to the update queue algorithm, it
“refreshes” the memory with the most current input messages. Consequently, this algorithm
models 2 fixed queue which provides only the latest information to the receiving processes.

DAS Language
The final task was to select an appropriate programming language which would be clearly under-

stood, readily implemented, and easily maintained for future enhancements.” The higher order
programming language Ada was chosen as it: 1) was specifically designed to be “self comment-
ing”; 2) supported a rigid interface specification and variable/type check protocol; and 3) pro-
vided a convenient package concept which permitted the parallel development of the architec-
ture, process, and start condition databases. Hence, Ada was the preferred language of choice as
the program was not constrained to execute in real-time in order to simulate real-time operation!

System Description Overview

The DAS consists of four major development areas which were specifically designed to support a
wide variety of digital system requirements and performance characteristics. These
requirements, namely, the Architecture Requirements, Process Requirements, Generic Shell
Requirements, and Quiput Requirements, are the core foundation from which DAS is able to
simulate a realistic multiprocessing, multiprogramming system. Details pertaining to each
functional area requirements are provided in the following sections.

Architecture Requirements

The DAS shall model either homogenous or heterogeneous DEs which operate on digital data in
a multiprocessing environment (i.e., two or more DEs). The DEs shall be interconnected with
one or more point-to-point links and/or common bus structures which represent the entire bus
network of a given architecture. The architecture features shall be defined in a separate database,
independent of the process requirements database, such that every feature can be developed with-

out knowledge of the process requirements and their in‘tem:la:tiomships.8 These features include:

o Interconnection network topologies using dedicated (static) links and common (shared)
buses;

o Bus direction protocols such as simplex, half-duplex, and full-duplex;

o Bus contention algorithms such as LRU, FCFS, and Static Priority;

o Databus transmissions such as packet (serial) and word (parallel) formats;

o Bus period specification (secs/bit); and
o An unbounded number of DEs and buses, with a minimum of two DEs and one bus structure.
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Process Requirements

The DAS shall model digital processes which operate in a multiprogramming environment (i.c.,
two or more processes running in the same DE). The DE processes shall communicate with one
another via one or more signal stimuli which characterize an infinite loop, program call, or data
notification message. The process features shall be defined in a separate database, somewhat
independent of the architecture requirements database, such that every process can be defined
without knowledge of the network configuration, provided the host DEs are identified in the
architecture database. These features include:

e DE process contention algorithms such as Preemptive (interrupt driven), FCFS, and Static
Priority;

e 1O message protocols such as sequential and update (refresh) rate;

e Identification of the process execution times (sec);

e [dentification of the process context switching or scheduling time (sec) per DE;

e Identification of the null process “waiting” time (sec) per DE (i.e., when no other processes
are currently running);

e Process communication stimuli to characterize an infinite loop, program call, or data
notification; and

e An unbounded number of processes, with a minimum of two processes defined.

Generic Shell Requirements

The Generic Shell is the simulation “heart” or engine of the DAS whose sole purpose is to
simulate a real-time multiprocessing, multiprogramming environment based upon the sequential
occurrence of timed DE and 10 events. A timed event is defined as the “new” state of a given
DE or 10 message which is placed in a time-ordered Event Queue according to the completion
time of the subject event. In other words, the timeline contains the current state of all DEs and
any existing IO messages at time “t” which reflect the end times of each event. Consequently,
the first event in the Event Queue represents the completion of an operation which is
subsequently removed from the Queue and processed (i.e., the next “new” event is selected from
the associated waiting events and inserted into the Event Queue), and the “next” first event is
removed and processed, and so on, until the simulation ends at time “t,”. A top level block

diagram of the Generic Shell Event Queue is provided in Figure 7.
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Figure 7. Event Queue Block Diagram
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The DAS start condition features shall be defined in a separate database, independent of the
architecture requirements database and somewhat independent of the process requirements
database, such that every start process exists in the process database but can be defined without
knowledge of the architecture structure. These features include:

o Fixed simulation start time at time zero (tg);

o User-specified checkpoints at delta time lengths (Atc);
o User-specified stop time (ty);

o Simulation of “real-time processing”; and

o Efficient performance (i.e., near real-time execution).

The Generic Shell shall correlate all three databases, namely, the architecture, processes, and
start condition databases to create and run the simulation, and shall generate an output data file
which contains the checkpoint data and corresponding statistical analysis.

Qutput Requirements

The DAS shall produce three types of information in the form of an output data file: User-
specified Checkpoints, Special Event Messages, and Statistical Analysis Report. In the first
case, User-specified Checkpoints shall be created every delta time point “At” such that the state
of every DE and IO Event in the Event Queue is provided to the user for general information.
The DAS shall also provide the capability to review the events at every time increment (i.e., the
“end time” of each front event in the Event Queue) whenever At is set to zero. Special Event
Messages, on the other hand, shall be generated as required, to inform the user of key events
which may warrant closer inspection through revision of Ate. Example “flags” or informational
messages include preempted processes, program calls and signals, and completed IO messages.
In the last case, a Statistical Analysis Report shall be generated which provides a summary of DE
percent utilization, process activation and completion statistics, and IO message notification. In
summary, DAS shall provide a comprehensive output file which contains the following detailed

information:
o The state of each event in the Event Queue every delta time checkpoint At;
o The state of each event in the Event Queue at every time increment such that Atg = 0.0;

o A listing of special or key events whenever processes are preempted, a process calls/signals
to one or more processes, and/or 10 messages are completed; and
o Statistical data in terms of DE percent utilization, process activation and completion

statistics, and IO message notification.

System Desien Qverview

The DAS design consists of four distinct Ada packages which are coordinated by the Main Pro-
eram to build and execute the subject architecture for a given time period: The Architecture Da-
tabase Package, The Processes Database Package, The Generic Shell Package, and Unique IO
Package. The Architecture Database Package reads all of the network characteristics from a
user-specified architecture database and places this information into a double linked list or
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“node” structure. Similarly, the Processes Database Package reads all of the DE process charac-
teristics and signal relationships from a user-specified process database and places this informa-
tion into a complex linked list or “process” structure. Next, the Generic Shell Package reads the
simulation start condition from a user-specified database, correlates all three subject databases,
creates/executes the Event Queue, and generates an output data file. Lastly, the Unique 10 Pack-
age provides unique IO services to all the subject packages which are not readily supported in
Ada (e.g., distinguishing words in a file). A top level interface diagram is provided in Figure 8.

Thie Both Generic
Main Ptrs Shell
Program W Package
10 das.a gen_files
Routines
Uniaue Architecture Processes
I bq Ptr Ptr
Package Architecture Processes
Database Database
unique_files Package Package
arch_files proc_files

Figure 8. Top Level Interface Diagram

Architecture Database Commands

The Architecture Database input file was specifically designed to be user-friendly in terms of
design flexibility, command simplicity, and file documentation. There are two basic input
commands, namely, LINK: and CBUS: commands, which retrieve the following information
from the subject input file and subsequently load into the node structure: 1) The identification of
DEs; 2) Their associated network configuration; and 3) Related bus or path characteristics. As
the name implies, the LINK: command is only used to link two DEs together in a static network
topology with the associated path characteristics provided in the command line. The path
characteristics include:

e Bus Contention Algorithm = (FCFS, Static Priority, LRU);
e Bus Period (secs/bit) = (positive [pos] real number * time unit) per bit, such that time unit =
(sec, msec, usec, nsec, psec);
e Databus Transmission = (parallel, serial);
e Databus Size = (pos integer number * bit unit), such that bit unit = (bit, kbit, mbit, gbit); and
e Bus Direction Protocol = (halfdup, fulldup) (Note: The simplex protocol is implemented
by default only if processes communicate in one bus direction between DEs).

The LINK: command requires the reserved word “LINK:” plus nine data entries which are all se-
parated by at least a single blank space. The command line format is shown in Figure 9, whereby
DEx # DEy (Note: The numbers are provided for sequential clarity; do not enter into database).
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1. LINK: 2. Bus Contention Algorithm 3. Positive Real Number (bus period)
4. Time Unit 5. Databus Transmission 6. Positive Integer Number (databus size)
7. Bit Unit 8. Bus Direction 9. DEx 10. DEy

Figure 9. LINK: Command Format

The CBUS: command is used to connect three or more DEs in a common bus configuration. The
command format is identical to that of the LINK: command with two exceptions: 1) Since the
number of DEs is unbounded, a delimiter “%” is required to indicate the end of the command
line; and 2) No Bus Direction Protocol is required since a CBUS network operates in a half-
duplex mode. The command line format is shown in Figure 10, whereby DE1 = DE2 ... DEn.

1. CBUS: 2. Bus Contention Algorithm 3. Pos Real Num (bus period)
4. Time Unit 5. Databus Transmission 6. Pos Int Num (databus size)
7. Bit Unit 8. DEl DE2 ooco DEn %

Figure 10, CBUS: Command Format

Both command line formats are case insensitive (i.e., all letters are either uppercase or lowercase)
and permit one-line comments in the database which are uniquely identified with a star character
« £o]lowed by at least one blank. The user may begin with either command; however, each
successive command must bwild upon previous ones, such that at least one DE listed in the
current command line is defined in an earlier command (i.e., the commands are not mutually
exclusive). And lastly, the Architecture Database Package creates an Architecture Pointer that
specifically points to the “beginning” of the node structure (i.e., the bus network defined by the
first command in the file) which is then passed onto the Main Program for further processing.

Processes Database Commands

The Processes Database input file was also designed to be easy-to-use and extremely flexible in
terms of system characterization and file documentation. There are two basic input commands,
namely, PROCESS and MESSAGE: commands, which retrieve the following information from
the subject input file and subsequently load into the process structure: 1) Identification of the
host DEs; 2) Their associated processing requirements; and 3) The IO message relationship
between processes. In particular, the PROCESS: command is used to specify the following DE
process characteristics which are directly loaded into the process structure:

e Host DE Name;

o Process Contention Algorithm = (FCFS, Static Priority, Preemptive);
o 10 Message Protocol = (update, sequential);

o Null Processing Time = (positive real number * time unit);

o Context Switching Time = (positive real number * time unit);

o Process Priority = positive integer; whereby 1 = highest priority; and
o Process Execution Time = (positive real number * time unit).

The PROCESS: command requires the reserved word “PROCESS:” plus several data entries
which are all separated by at least a single blank. A delimiter “0%” is required at the end of the
subject command line since the number of processes must be unbounded. It should also be noted
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that the process priority is a required input for each process, regardless of the chosen contention
algorithm. The command line format is shown in Figure 11, whereby P1 # P2 = ... Pn.

1. PROCESS: 2. Host DE Name 3. Contention Algor 4. 10 Msg Protocol
5. Pos Real Num (null) 6. Time Unit 7. Pos Real Num (context) 8. Time Unit
9. Pl Priority  Pos Real Num (execution)  Time Unit

P2 Priority  Pos Real Num (execution)  Time Unit

Pn Priority  Pos Real Num (execution)  Time Unit %
Figure 11. PROCESS: Command Format

The purpose of the MESSAGE: command is to identify the signal interface between the source
process and one or more destination processes. The total message size sent between the source
and any given destination process is described in terms of a positive integer number and bit unit
(i.e., bit, kbit, mbit, and gbit), and is loaded into the IO Message Record. The “relationship” be-
tween the source and destination processes (i.e., infinite loop, program call, or data notification)
is simply created by listing the source process first, followed by the initial destination process
and corresponding message size, followed by the next destination process and corresponding
message size, and so on, until all of the relationships stemming from the source process are com-
plete. A delimiter “%” is required at the end of the command line since the number of process
calls are unbounded. The command line format is shown in Figure 12, whereby P2 = P3 = ... Pn.

1. MESSAGE: 2. PI (source process)
3. P2 (first destination process) Positive Integer Number (10 msg)  Bit Unit
P3 (second destination process) Positive Integer Number (10 msg)  Bit Unit

Pn (n-1 destination process) Positive Integer Number (10 msg)  Bit Unit %
Figure 12. MESSAGE: Command Format

Both command line formats are case insensitive and permit one-line comments in the database
which are uniquely identified with a star character “*” followed by at least one blank. The user
may begin with either command; however, after the database is complete, all the processes listed
in any given MESSAGE: command must be identified in one or more corresponding PROCESS:
commands but not (necessarily) visa versa. Furthermore, the PROCESS: and MESSAGE:
commands must uniquely identify a process relation and host DE characteristics, respectively,
such that they cannot be enhanced or “added to” by subsequent commands. This design feature
was specifically implemented to prevent the user from creating enhanced commands which could
be added haphazardly throughout the file and subsequently overlooked, especially if the database
were very large. And lastly, the Processes Architecture Database creates a Processes Pointer
that points to the beginning of the process structure (i.e., the process record defined by the first
command in the file) which is then passed onto the Main Program for further processing.

Generic Shell Command

The Generic Shell Package has a fairly simple input command file format which requires a single




command word called the START: command. This command basically requests a delta check
time, a simulation end time (i.e., both in terms of a positive real number * time unit), and the
name of the process(es) to begin at time zero. A delimiter “%” is also required at the end of the
command line since the number of start processes are unbounded. The command line format is
shown in Figure 13, whereby PI # P2 = ... Pn.

1. START: 2. Positive Real Number (delto time) 3. Time Unit
4. Positive Real Number (end time) 5. Time Unit
6. P1 P2 oco Pn %

Figure 13, START: Command Format

The subject command line format is case insensitive and permits one-line comments in the data-
base which are uniquely identified with a star character “*” followed by at least one blank. The
user may only use one START: command; new information or “enhancements” may not be add-
ed with additional START: commands. Furthermore, at least one start process must be identified
in the command and none of start processes may reside in the same DE. The user-defined delta
checkpoint may be defined as 0.0 secs, such that the status of every event record in the Event
Queue is provided to the user, but it may not be greater than the simulation end time.

Conclusiom

The DAS was developed to accurately characterize a real-time multiprocessing, multiprogram-
ming environment for a wide variety of digital applications. The system design was based upon
realistic processing characteristics and architecture features such as unique network topologies,
multiple process and bus contention algorithms, and different IO transmission formats. After se-
veral test cases were executed and carefully examined for accuracy, the simulation appears to re-
present actual system performance and highlights expected performance deficiencies.
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ALLOCATION OF SOFTWARE IN A
DISTRIBUTED COMPUTING ENVIRONMENT

Dan H. McMillan
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Dayton, Ohio 45432

Abstract

The Avionics Logistics Branch at Wright Laboratories (WL/AAAF) and SAIC are currently
developing a new type of distributed processing architecture for high performance real-time
applications called the Virtual Test Station (VTS). The VTS architecture consists of a collection
of computers, workstations, and dedicated application hardware that can be dynamically
reconfigured to meet changing and/or multiple simultaneous real-time processing applications.
When a VTS user needs to run an application, he selects the desired software for that application
and the VTS Resource Allocation Manager (RAM) automatically identifies the resources needed
for that application, interconnects them, and downloads the selected software. The resource
allocation process optimizes the selection of the resources and partitions the software across those
resources. When the application session is complete, the RAM removes the downloaded
software, breaks the inter-resource communication links, and makes the resources available for
new applications. This paper describes the approach we have implemented for resource selection
and software allocation in the VTS.

VTS Overview

To keep pace with the growth of avionics software support costs, particularly for large, complex
avionics systems, WL/AAAF and SAIC are building on the previous Advanced Multi-Purpose
Support Environment (AMPSE) work with the development of the Virtual Test Station. The
AMPSE is a distributed architecture containing a set of heterogeneous computers connected via a
reflective shared memory network, either the Shared Memory Architecture Real-Time Network
(SMARTNet) or SCRAMNET. The AMPSE architecture was designed for testing avionics,
therefore the architecture supports the avionics-under-test with the remaining aircraft simulated
using software models, software emulators, and hardware emulators. While the AMPSE
approach has made the development of test stations faster and less expensive, the VTS takes
avionics support environments to the next level. In the AMPSE, all of the avionics and
processing computers are hard-wired together with SMARTNet and MIL-STD-1553. As shown
in Figure 1, the VTS takes these same signals into an software controlled electronic switching
device, the Modular Switching System (MSS). This allows the VTS to provide an OFP test
engineer with a complete set of avionics and processing computers that are needed for any given
test, and it frees the remaining hardware for use by other OFP engineers. A major cost driver of
avionics support environments is the expense and the underutilization of the avionics and
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processing computers used in these systems. One of the primary goals of the VTS is to best
utilize the hardware and software to provide each OFP engineer with a “virtual” test station. (i.e.,
the subset of resources and software necessary for their avionics test). This is the role of the
Allocator. It uses the pool of available avionics and processing computers, the collection of
simulation software, the simulation base frame rate, and the selected avionics-under-test to
determine an optimum set of resources for the OFP engineer’s test. This paper focuses on the
Allocator algorithm that generates this optimum set of resources.

Design Considerations

Using the Resource Allocation Manager
(RAM), an OFP Engineer can simply sclect
an avionics device for testing and the
simulation models necessary for the test. The
and Modeal engineer doesn’t have to specify which
Database computers are needed or which software
models run on each computer. The Allocator
utilizes a database of this information that
identifies every hardware resource (e.g.,
computer, workstation, and avionics device)
known to the VTS, and when each is reserved
for another test session. The database also
identifies every software model that is part of
an avionics simulation. Since the basic VTS
architecture is a distributed simulation (i.e.,
software models running on separate, yet
synchronized computers), this database
Figure 1 VTS Block Diagram contains a cross-reference between software
and hardware platforms to identify which
computer can run each model. After the OFP
engineer selects the avionics device and
simulation models, the Allocator uses the database and generates the smallest set of resources
needed to execute the selected models.

Resource

Ethernet

Avionics,
Computers,
Workstations

There are some basic issues to consider when attempting to perform this function. For us, the
primary consideration was finding a solution if one exists. We investigated numerous
approaches, and settled on a single pass solution that sorts the models to optimize the chance of
finding a solution on the first pass. Performance was our second consideration. To enhance
performance, we preprocess all static data to accelerate the decision making processes. We use
fast response data structures like array and array slice arithmetic instead of searching through
linked lists, and we minimize disk access by loading all data prior to Allocation. Our last design
consideration was to find the optimum solution. Determining what optimum meant was a critical
step. For us, it meant finding the solution using the minimum number of resources, while
maximizing their availability (i.e., available for the greatest length of time). Finding a solution
using the minimum number of resources is important because it makes more resources available
for other OFP Engineers to perform simultaneous test sessions. Maximizing the resources’
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availability gives the OFP Engineer the most flexibility when scheduling a the test session. The
next few paragraphs describe the algorithm that we implemented in meeting these objectives.

Design Overview

As shown in Figure 2, the Allocator receives the hardware resources, the user’s software
selections, and the schedule data as inputs. The schedule data is composed of the session start
time, the session duration (i.e., how long the session is to continue), and the availability of all
resources.

The Allocator takes these inputs
e Schedule Software and. corr}putes an optlmlzed
ROSOUFCes ) Selections configuration and a maximum
session duration. The
configuration is composed of the
avionics devices, computers (i.e.,
processing resources), and
simulation models that are
assigned to each computer to
satisfy the OFP Engineer’s
selections. After a configuration
is generated, the resources are
reserved for the scheduled time
period which guarantees they are
not used by other OFP Engineers.
If the algorithm cannot generate a
Figure 2. Aliocator Overview configuration, the user will be

notified.

Allocator Algorithm

The Allocator algorithm is a single pass algorithm that calculates resource availability, sorts the
simulation models, chooses computers, and distributes the models among those computers. The
next several paragraphs describe these functions.

Calculating Resource Availability - Since the RAM gives OFP engineers the ability to schedule
test sessions in the future, we must track the reservations for each avionics and processing
resource (i.e., computer). Thus, when a user selects a specific avionics box, the RAM knows
immediately if another user has it reserved. As discussed earlier, one of the main functions of the
Allocator is to maximize the availability of the whole configuration (i.e., the period of time that
the allocated resources are all available). When the Allocator begins, it checks each resource to
make sure it is online (i.e., not down for maintenance) and it is not reserved at the selected start
time. Then, it calculates its availability and adds it to the available resource table. Availability is
the difference between the start time and its next chronologically reserved time (see Table 1 for an
example of an Allocator generated available resource table). If the resource is offline, or the
session’s start time conflicts with a reserved time, its availability is zero.
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Sorting the Models - The next step the Allocator performs is to sort the models in such a manner

that it optimizes the solution and gets a best fit on the initial try. The algorithm sorts the models
so that those that only run on a single resource are first, and those that run on several resources
are last. The theory is that those models with comparatively limited distribution possibilities need
to be distributed first. We would not want to fill up critical resources with models that can run on
a large variety of resources.

Table 1. Generated Resource Availability

Test Session start time scheduled for 06-13-95 at 0700

Res 1D CPUs Reserved Times Avail
(date, hr-hr) (hrs)

11030, 040, SPARC | 06-13-95,1500-1900 8

2 | VAX3100 06-13-95,2300-2400 16

3 | SPARC 06-13-95,1900-2300 12

Choosing Computers and Distributing Models - The final step the Alocator performs is to
choose the computers (i.e., processing resources) and distribute the models on them. Here, the
Allocator uses the database to determine the set of computers that can execute each model. It
takes this list and eliminates those computers which are not available, then eliminates those
already in the configuration (if this is the first resource, none are in the configuration). If all have
been eliminated, then the Allocator reports back to the OFP engineer that the resources required
to satisfy the user's selections are not available.

Using the remaining resources, the algorithm determines the next resource to add to the
configuration. To do this, it first finds a resource whose availability equals the current
configuration's availability. If none exist, then it finds the resource that is greater than the current
configuration's availability, but is the closest. If none exist, it finds the resource that is the closest
to the current configuration's availability, and the current configuration's availability is reduced
accordingly. This process maximizes the availability of the whole configuration.

It adds this computer to the configuration, and assigns the model to that computer. The Allocator
then steps to the next model in the sorted model list. The algorithm attempts to assign this model
to a computer already in the configuration, provided the total of all the models’ execution times
assigned to that computer does not exceed the simulation frame time. If it exceeds the frame
time, it is prevented from being placed on this computer, and the Allocator attempts to put the
model on another computer already in the configuration. If it cannot, it uses the above technique
to choose another computer. This process continues until all models have been assigned to

computers.

Additional Features

To provide additional flexibility for the OFP Engineer, the basic Allocator algorithm has been
updated to accommodate multi-CPU processing computers (e.g., a VME chassis with several
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single-board computers). Additional features were also added to help the engineers responsible
for maintaining the VTS software and hardware. To support integrating and testing new VTS
hardware resources, a system maintainer can select specific processing computers and manually
distribute software to the CPUs. To support VTS software development and maintenance, the
system maintainer has the additional capability of selecting a class of computer and placing
software on it. For example, this feature would be used if the system maintainer wants to test a
new simulation model that runs on a VAX under the VMS operating system. Several VAX-VMS
computers may exist in the VTS, so instead of specifying which one he wants, he can select the
computer class “VAX-VMS” and the Allocator will find one with the best availability. This
reduces resource conflict, thus increasing the VTS flexibility. This new Allocator algorithm is still
a single pass algorithm, sequentially performing the same operations as before. However, in
addition to these operations, a significant amount of the database is now preprocessed to meet our
performance requirements. The following paragraphs describe the functionality that has been
added to the Allocator to support the new features.

Preprocessing - Because performance is critical, the algorithm's static input data is preprocessed
prior to invoking the Allocator. The database of VTS information has been expanded for the
simulation models to include the model’s execution time for each type of CPU, and a series of
four fields for improving the Allocator’s performance. Because the VTS architecture is based
upon a series of distributed hardware resources, each model may be executed on several
computers (i.e., processing resources). The first three fields provide sums of all the computers,
CPUs, and execution times for each model. The final field is a list of the specific computers that
the model can run on. Refer to Table 2 for an example of this data.

Table 2. Software Model Data

Model | 68030 | 68040 | VAX3100 | SPARC # # Exec Sorted Resources
Res | CPUs Time (Res ID>CPUs)
ADC 5000 1000 5000 0 2 3111000 | 1>040,030
2>VAX3100
ENV 7000 4000 8000 6000 3 51 31000 | 1>040, SPARC, 030
2>VAX3100
3>SPARC
FCN 1250 800 0 0 1 2 2050 | 1>040,030
FCR 10000 8000 0 0 1 2 { 18000 1>040,030
HUD 8000 3000 0 1500 2 3] 14000 | 1>SPARC, 040,030
3>SPARC
INU 3500 2570 3000 1000 3 51 11070 | 1>SPARC, 040,030
2>VAX3100
3>SPARC
PLN 7000 4900 0 0 1 2] 11900 | 1>040,030
SMS 9000 7000 0 0 1 21 16000 | 1>040,030
WEP 0 0 0 4000 2 2 8000 | 1>SPARC

3>SPARC

Calculating Resource Availability - No changes were necessary to accommodate the new
features. This function returns a table of resource availability, as shown in Table 1.
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Additions to Sorting Models - The goal of model sorting is still to optimize the configuration and
get the best fit on the first try. It still sorts the models such that the most limited are first. For
example, a model that only runs on one VTS computer is at the top of the sort. Previously, this
algorithm only sorted the models based on the computers they can run on. Now, the algorithm is
modified to account for the preprocessed CPU sum and the execution time sum. The Allocator
reduces these sums for resources that have an availability of zero. The sums indicate the
likelihood of finding a resource that can execute a model, and the algorithm sorts these models
based upon that likelihood. By reducing the sums for non-available resources, the model sort is
more accurate. The primary sort criteria is the number of processing resources on which a model
can execute. It is sorted from those that execute on the least number of resources to those that
execute on the greatest number of resources. If necessary, the second sort criteria is the number
of CPUs that the model can run on, again from least to greatest. The final sort criteria (if needed)
is based on execution time (i.e., the sum of the execution times across all CPUs that this model
can execute on). It is sorted from largest to smallest. This last criteria is based on the theory that
larger sums imply that the execution time per CPU is higher. Therefore, it occupies more of the
CPU's processing power and makes it more difficult to assign. Using the Model data in Table 2
and the Resource Availability in Table 1 as input, the following is the sorted model list that is
generated using this algorithm:

FCR, SMS, PLN, FCN, WEP, HUD, ADC, ENV, INU

Additions to Choosing Computers ond Distributing Models - In the basic Allocator (described
earlier), the engineer had the capability of only selecting an avionics device and simulation models.
The Allocator built the configuration starting with the avionics devices, then added the processing
resources that executed the selected models. Now, the Allocator must account for the user
selecting CPU classes and specific computers. This results in the following sequence of events:

1) Assign the selected avionics to the configuration. Since the user has explicitly
specified these avionics, they must be part of the configuration. If any of these are
unavailable, then a configuration cannot be generated, and the Allocator reports
this to the user.

2) Assign selected processing resources (and their CPUs) to the configuration. If
the user has indicated that models are to run on specific CPUs within these
resources, the models are also assigned to these CPUs. Again, if any are
unavailable, then a configuration cannot be generated, and the Allocator reports

back to the user.

3) Allocate resources for user selected CPU classes (the user may have assigned
models to these). This is a complex step because the Allocator must find a CPU of
the correct class and it must have enough room to assign the models that the user
requested. To most efficiently utilize the VTS resources, the Allocator will first
try to find a CPU of the requested class in the existing configuration. If found and
the models fit, then the Allocator simply adds those models to that CPU. If not
found or the models do not fit, then an entire resource (one containing the
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requested CPU class) i1s chosen and added to the configuration and the models are
assigned to that CPU.

4) Distribute the models that were not assigned to a specific processor. This step
is the same as described in the basic Allocator algorithm. First, the algorithm will
attempt to place the model on a CPU in the existing configuration. If the model
can’t be placed, then a new resource will be chosen.

Use of the Allocator algorithm yields a configuration that contains a highly optimized set of
resources, their CPUs, and the simulation models distributed across the CPUs. Table 3 illustrates
the configuration that was generated using the Resource Availability from Table 1 and the Model
database in Table 2 (this assumes all of the models were selected by the user).

Table 3. Generated Configuration

Generated Configuration (for a frame time of 20,000 microseconds)
Res ID | CPU | Model Exec CPU | Model Exec CPU Mode Exec
Time Time 1 Time
1| 040 FCR 8000 | 030 FCN 1250 | SPARC | WEP 4000
SMS 7000 HUD 8000 ENV 7000
PLN 4900 ADC 5000
INU 3500
Total 19900 17750 11000

Availability: 8 hours

Future Enhancements

Since development of the Allocator algorithm, several enhancements have been identified. They
include updating preprocessed sums when a resource is added to the configuration, shuffling
other users' reserved resources, and allowing lower rate models to start on different frames.

Update Sums - After a resource is allocated to the configuration, the algorithm would update the
sums and resort the remaining unassigned models. The theory behind this is one less resource is
available to the models, thereby changing the order in which the remaining models should be
allocated.

Shuffling other users' resources - If a critical resource was reserved for another configuration, the
Allocator would unreserve that resource if it could generate a new configuration for that user.
The resource would then be allocated to the current configuration. This helps eliminate some
potential conflicts and promotes simultaneous test sessions.

Different rate models - The algorithm currently does not take into account different hertz rate
models. It assumes a peak usage of CPU for each frame. The algorithm could be modified to put
different rate models onto the same CPU, controlling their starting frame. This would keep the
peak load for each frame beneath the frame time limit, and potentially utilize less resources.
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Conclusion

The VTS concept represents a very powerful tool for configuring, scheduling, and managing
distributed architectures in all levels of avionics software testing. The Allocator algorithm is the
backbone of the VTS architecture. It generates an optimized configuration of avionics and
processing resources to meet the OFP Engineer's needs. It considers the engineer's selections,
simulation base frame rate, execution times of software across multiple platforms, and availability
of resources when determining the loading of software across its processing resources. It greatly
enhances the VTS flexibility by defining the minimal set of resources for any given simulation,
thus providing a better opportunity for simultaneous test sessions. It is a robust and flexible
algorithm that has applicability to any environment where software needs loaded across a
distributed set of heterogeneous computing resources.
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VTS (VIRTUAL TEST STATION)
TECHNOLOGIES

Steven A. Walters
Science Applications International Corporation
Dayton, Ohioc 45432

Abstract

The Avionics Logistics Branch at Wright Laboratories (WL/AAAF) and SAIC have been
conducting research to reduce the cost and improve the performance of simulators used to
integrate and test avionics software. This research has led to the development of the VTS
(Virtual Test Station). The VTS automates the configuration of avionics integration support
facility resources to meet the changing needs of avionics engineers and testers as their avionics
software progresses from static unit testing to full dynamic integration testing. The two central
elements of the VTS architecture are the MSS (Modular Switching System) and the RAM
(Resource Allocation Manager). In the VTS, the communication signals from a set of modular,
distributed test station resources are routed through the MSS permitting resources to be
interconnected as independent groups under remote control. The RAM provides an intuitive,
graphical interface to users and controls the automatic selection, scheduling, and allocation of the
test station resources. The VTS permits multiple groups of engineers to share a common set of
testing resources, thereby promoting more efficient resource utilization with a smaller aggregate
set of resources. This reduces both the acquisition and maintenance costs of the avionics support
facility, particularly for large complex avionics systems, while providing avionics developers and
test engineers with the exact configuration they need at any time during the avionics development
and testing cycle. This paper describes the technologies we have employed in creating the VTS.

Introduction

The VTS Concept is designed for a large avionics integration support facility (ISF) or system
integration laboratory (SIL) that requires a number of avionics test stations for supporting a large
weapon system with many embedded computers. VTS is also intended for a facility that must
support a number of embedded computers across a variety of different weapon systems. Taken
together, there is a significant quantity of resources, such as simulation computers, workstations,
line replaceable units (LRUs), etc., in a large ISF or SIL. Unfortunately, in a typical ISF or SIL
there is little or no cross utilization or sharing of these resources across the different test stations.
This results in a great deal of duplication from test station to test station and also a loss of
efficiency when the work load on a particular test station approaches 100%.

The VTS Concept addresses this problem with two basic functions. First, we route all of the
communication signals from the test station resources to a switching device so that groups of




resources may be interconnected under remote control. Second, we provide a straightforward,
intuitive way to access these resources and to combine arbitrary groups of them to form “virtual”
test stations. “Virtual” in this context does not imply a relationship to the now popular “virtual
reality”. It means that the particular physical resources that provide a test station function are not
fixed, but may vary from one test session to another. The test station functionality will be
preserved from one test session to another, but it may be mapped to different physical resources
during different sessions due to variations in availability based on other users, maintenance,
equipment failures, etc. The result is that with VTS we make more efficient use of our test station
resources. This in turn reduces the total number of resources needed to support an avionics suite
which lowers the acquisition and upgrade costs for the facility and decreases facility maintenance
costs. Most importantly, however, we reduce both the time and the cost of testing operational

flight program (OFP) software.

We have implemented the two basic functions of the VTS Concept, switching and resource
management, with two major components, the Modular Switching System, or MSS, and the
Resource Allocation Manager, or RAM, respectively (Figure 1). The MSS is a hardware device
with switching modules and communication interface modules for electronically connecting inter-
resource communication signals, such as high-speed fiber-optic and twisted-pair networks
(SCRAMNet, SMARTNet, etc.), low-speed networks and busses (Ethernet, MIL-STD-1553,
etc.), and analog/discrete/synchro signals. The connection of resources within the MSS i
directed by the RAM through messages delivered via Ethernet. The RAM is software that resides
on modern, UNIX-based workstations and provides users with an intuitive, graphical toolset for
selecting and scheduling resovrces.
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Figure 1, VTS Components

178




Avionics Testing with VTS

Avionics software testing represents a spectrum of requirements across the testing phases from
the simplest static tests with a single LRU proceeding through full dynamic and integration testing
to final system testing. Traditionally, we have created completely separate test stations to
accommodate the testing in these different phases. With the VTS, we no longer have independent
test stations, but rather a large collection of shareable resources that we can combine efficiently to
best suit the particular testing phase we are currently in.

The VTS enables test engineers to rapidly reconfigure testing resources during subsystem,
integration, and system testing phases. During subsystem testing, the test engineer selects a small
subset of resources to confirm basic OFP functionality through static tests. The test engineer
progressively adds additional resources as testing progresses into greater levels of dynamic
testing. As we transition to the integration test phase, the test engineer conducts full dynamic
testing starting with a single LRU and adding more until testing is accomplished with the
complete system. Simulated or emulated LRUs are often used in the early testing phases and are
later switched out and replaced by actual LRUs. System testing is the last step prior to flight test.
OFPs are tested with as much of the actual avionics suite as possible. All of this testing, through
each of these phases, can be accomplished in the VTS with a common set of resources that are
connected and reconnected in whatever configuration is required at each phase in the testing
process. The VTS flexibility also enables a greater number of test engineers to work in parallel
during subsystem testing when each test engineer requires fewer resources. Each engineer uses
only the resources actually required for their test, leaving the remaining resources available to
others.

Background

SAIC is working with WL/AAAF to improve the performance and reduce the cost of embedded
software support. We are focused on research, prototyping, and limited production of test station
technologies, including high performance distributed simulation architectures, techniques for the
effective use of commercial-off-the-shelf (COTS) hardware and software, and techniques for the
use of open standards, such as Ada, X/Motif, VME, UNIX, etc. This activity produced the VTS
Concept, an evolution of earlier research in distributed, real-time simulation architectures. We are
also developing methods and tools to improve the efficiency of OFP testing, such as AutoVal, a
toolset that automates the OFP test process.

SAIC’s Aeronautical Systems Operation (ASO) has spent the past four years implementing a
comprehensive program of software process improvement based on the Software Capability
Maturity Model (CMM) from the Software Engineering Institute (SEI). This program of
continuous process improvement has led to our assessment by an independent outside agency at
SEI Level 3, a level characterized by fully defined software engineering processes and program
management practices. Of all the assessments conducted nationally, the SEI reports that only 9%
have been assessed at this level or higher. SAIC is conducting the VTS Program with WL/AAAF
in accordance with SEI Level 3 processes. It was one of the programs reviewed during SAIC’s
software process assessment and found to be Level 3 compliant.
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VTS Technologies

The technologies we are using to implement the VTS fall into three groups: reuse of existing
hardware and software technologies, the RAM software suite, and the MSS hardware. The VTS
can be used as the foundation for construction of a new ISF/SIL, or it can be used to supplement
an existing facility and greatly enhance its efficiency and cost effectiveness. In an existing facility
that has simulation technologies based on a modular, loosely-coupled, distributed processing
architecture, VTS technologies can be easily inserted with minimal disruption to the existing
system. In such a case, an organization can gain almost immediate benefit from the efficiencies of
automated scheduling and allocation of resources.

Even test stations based on a tightly-coupled, monolithic architecture can capitalize on VTS
technologies. WL/AAAF has a cohesive architecture and toolset that is well suited for
transitioning a large, monolithic simulation system into a modular, distributed system. This
architecture consists of an executive, simulation model design standards and templates, and
programming guidelines. It also includes a number of support tools for simulation control,
automated configuration management, automated testing, etc. The executive and model design
standards are the mechanisms for making the simulation software modular and independent in a
distributed processing environment. The programming guidelines focus mainly on ensuring
software portability across different processor types and on providing high-performance,
deterministic real-time operation. WL/AAAF successfully used this approach to transition a large,
mainframe-based simulation for the F-16C/D to a distributed system consisting of COTS single-
board computers, minicomputers, and high performance workstations. The entire effort took less
than a year for more than 65,000 lines of simulation code. The simulation models were inherently
modular and adapted easily to the distributed architecture. The most time consuming effort was
conversion of non-ANSI standard language constructs due to the mainframe’s non-standard
compiler. This experience graphically illustrated the benefits of designing systems that are
hardware vendor-independent and based on open standards.

Resource Allecation Manager (RAM)

The RAM is responsible for management of computational and other resources in the VTS. Itis
written entirely in Ada and is designed for operation on a standard UNIX workstation utilizing a
windows-style, X/Motif graphical user interface. The RAM can run on any workstation in the
facility that can reach the MSS over Ethernet. Figure 2 shows a system block diagram of the
VTS, and how the RAM and its various components interact with the MSS. We have established
a client-server relationship with some of the RAM components to permit the RAM to be used by
more than one user at the same time (e.g., from the workstations at each test engineer’s desk).

The RAM is designed to serve the needs of three classes of users: test engineers, system
maintainers, and the system tanager. Test engineers use the RAM to configure and schedule test
sessions. System maintainers use the RAM to add or remove computing or avionics resources, to
update the simulation software library, to assist test engineers, and to handle problem reports.
The system manager uses the RAM to monitor resource utilization, to set scheduling priorities,
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Figure 2, VTS System Block Diagram

and to adjust the resource mix. The most prevalent users are the test engineers, and the RAM has
been carefully designed to streamline their access to the system for testing embedded software.

RAM Operation Overview - The Test Engineer

Test engineers first use the RAM to select the items they need for a test session. The items they
select are not physical test station resources, but are the simulated or actual components of the
avionics system they need to perform the particular test activity. As they configure the simulation
components, they are, in effect, selecting a set of simulation software. They do this, however,
without regard to what physical computing resources will be needed to run that software. The
entire process of mapping the selected components to specific software and then mapping that
software to computing resources is handled automatically by the RAM. As a result, test engineers
don’t have to become experts on all the configuration and loading rules for dozens of computers.
They can concentrate on being experts on testing embedded software.

After the test engineer has selected a configuration for a test session, he uses the RAM to
schedule the session. The availability of resources to support a test session is a function of what
resources other test engineers are using at any given point in time. When the test engineer
activates the RAM scheduling function, the RAM presents the test engineer with a graphical
display of the time periods during the next week when sufficient resources are available to support
his test session. The test engineer then schedules one of these open time slots, and the RAM
reserves the configuration he has selected at that time.
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Later, when the scheduled time arrives, the RAM makes a quick check to see that the required
resources are still available. Tf they are, the RAM directs the MSS to connect the resources,
downloads the selected software to the proper resources, and alerts the test engineer that the test
session is ready to begin. At the end of the session, the RAM removes the downloaded software
and signals the MSS to break the resource connections.

RAM - Selection

The first level of selection is organized by “block” (Figure 3). This categorization is purely
arbitrary and is based on how the Air Force upgrades aircraft. A block simply represents a
collection of software components that can operate together for the support of a particular
aircraft, some of which may be common to §
more than one block (or version of aircraft).
The “block” nomenclature is data driven and
may be tailored to the way systems are
organized in the particular facility. In a
facility that supports more than one aircraft,
this first level of selection could apply to
those different aircraft. Once a block is
chosen, the test engineer is prompted to
select a test session configuration, either one
that he has previously stored, or a standard
system configuration template.

 {izia ; 15218

| | s swe| ws

Figure 3, Block Selection

Figure 4 shows the main RAM selection window that the test engineer uses to specify the
configuration of a test session. The test engineer simply clicks on the button for each avionics

component he needs for this test session. If a particular component has more than one option
available, as in the

case of models with
differing  levels  of
fidelity or features, a
pop-up window
appears and prompts
the test engineer to
select the desired
option. Everything in
the selection window
is data driven and can
be tailored to the
o e o 4 i specific facility
T owThewin i statonz2 =]l environment, The
T Gocipit - iestationzis’ - | particular partitioning
S e : shown here, both by
group and by model,
pertains to a particular

Figure 4, Session Configuration Selection
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F-16 facility and would be different for different facilities. To get maximum benefit from the
VTS, the simulation software models should be both modular and independent.

RAM - Scheduling

After selecting the desired configuration for his test session, the test engineer opens the Scheduler
window to schedule the session (Figure 5). It is possible to open both the Selector window and
Scheduler window up at the same time, and in fact, this is the preferred approach. This permits
the test engineer to adjust the
test session configuration in
the Selector window and
quickly see the effect on
available session times in the
Scheduler window. In this

[ 12 3in 05 (on)

window, color is used to 130un 95 (Tus)

ST Tahil 1 71 14 Jun 95/ (Wed) I
indicate availability. =~ Red s ounos o -
means that the resources § |isvunoseEn

| 17.Jun 95 (Sat) [~

needed to accommodate the
configuration selected are not
available. Green means that
they are available, and blue
shows other test sessions
already scheduled by this test
engineer. The blue button
superimposed on the Figure 5, Session Scheduling

schedule bands represents the test session. The test engineer uses the workstation mouse to drag
this button to a desired time slot within a green band. He can also expand or contract it to adjust
the desired session length.

RAM - Allocation

Automatic allocation of resources by the RAM is the real power of the VTS Concept. The RAM
takes the software selected by the test engineer and, by analyzing the resources that are required
and the resources that are available given the current schedule, it selects the best combination of
hardware resources. This also guarantees that the same resource won’t be scheduled by two users
at the same time. After the hardware resources have been allocated, the RAM then computes the
best load-balanced distribution of the software on the allocated resources. This is a very
sophisticated algorithm and was considered to be one of the higher technical risks when we began
the development of the RAM. Through rapid prototyping, we experimented with several
alternative approaches and produced a successful solution that works very well.

RAM - Maintenance and Diagnostics

The RAM maintenance component is used by the system manager and system maintainers to
establish and maintain the data files that define the facility and all the resources controlled by the
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VTS. This includes adding and removing resources from the facility, and also taking them on and
off-line, i.e. changing their availability for allocation to test engineers. If a resource fails while a
test engineer has it allocated, the test engineer may also take the resource off-line. Following
successful completion of a maintenance activity to repair it, a system maintainer then puts the
resource back on-line. The RAM maintenance component continuously accumulates usage
statistics for all of the resources. These show the system manager which resources arc
underutilized (and may potentially be removed) and which resources are in the highest demand
(and may be supplemented to increase organizational throughput). The system manager and
system maintainers also use the RAM maintenance component to log and track problem reports
on the system.

The RAM diagnostics can be thought of as a system-level built-in test (BIT). At periodic
intervals set by the system manager, the RAM automatically allocates unused resources, and then
downloads and runs self-test software. If a test fails, the resource is taken off-line and the system
manager alerted. If the test passes, the resource is deallocated and remains available. For
example, twice a week, an avionics computer resource that is not currently allocated could
automatically be powered on and loaded with a diagnostic program. In conjunction with the
diagnostic program, an automated test could execute to verify correct operation of the hardware.
If the diagnostic fails, then the resource would be automatically taken off-line for maintenance. If
it passes, the avionics computer would be powered off and remain available to test engineers for

future test sessions.
Modular Switching System (MSS)

The MSS has a standard VME 6U form factor chassis and accommodates up to four switch
modules and up to 32 modular communication plug-ins in any combination (Figure 6).
Communication with the RAM and control of the switching circuitry is handled by software in a
COTS VMEbus single board computer in the far left slot. The four center 6U slots accommodate
switch module plug-ins that can be mixed and matched to adapt the MSS to the requirements of
the particular ISF/SIL. The 32 remaining 3U slots are used for Modular Communication Plug-ins
(MCPs) that are compatible with an installed switch module. Any MCP-type can be installed in

any slot.

The RAM keeps track of which resources are connected to which MCPs in each MSS.
Communication with the MSS from the RAM is handled via TCP/IP over Ethernet. The
embedded controller in the MSS receives connect and disconnect commands from the RAM,
coordinates with the other MSSs (if present), and activates the appropriate switches.

There are currently three switch module types. Crosspoint switch modules are used for high-
speed fiber or twisted-pair networks with a ring topology such as SCRAMNet and SMARTNet.
Linear switch modules are used for lower speed networks with a bus topology, such as MIL-
STD-1553 and Ethernet. Our design emphasis throughout has been on complete modularity.
flexibility, and reconfigurability. The use of plug-in switch modules and MCPs allows us to tailor
the MSS configuration to the unique requirements of any avionics test facility.
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Figure 6, Modular Switching System

A variety of MCP-types are provided. The MCP design is also completely modular and new
MCP-types may be developed to handle additional signal types and/or emerging network
technologies in the future without having to replace the entire MSS.

Conclusion

The VTS concept represents a very powerful extension of present ISF or SIL architectures for all
levels of avionics software testing. It capitalizes on the modularity of the modern, high
performance distributed processing paradigm to provide a complete system of automatically
reconfigurable test station resources. This total reconfigurability helps optimize resource
allocation, enhances maintainability, and increases work efficiency by providing exactly the
capability each test engineer needs for each phase of testing. Most importantly, the VTS concept
can reduce the cost of the avionics support facilities for large, complex weapon systems. Because
of better resource utilization, VTS reduces the number of resources required which lowers both
facility acquisition costs and facility life cycle (support and maintenance) costs. Finally, VTS
reduces avionics support costs by improving testing speed and efficiency. Given the projected
cost of support facilities for the weapon systems than are scheduled to come into the Air Force
inventory in the next five years, VTS could save the Air Force almost $1 billion.
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1. Introduction

Testing avionics and military equipment often requires extensive facilities and numerous operators
working in concert. In many cases these facilities are mobile and can be set up at remote locations.
In almost all situations the equipment is loud and makes communication between the operators
difficult if not impossible.

To facilitate communication, most test sites incorporate some form of intercom system. While
intercom systems themselves are a not a new concept and are available in many forms, finding one
that meets the requirements of the test community (at a reasonable cost) can be a significant
challenge. Specifically, the test director must often communicate with several manned stations,
aircraft, remote sites, and/or simultaneously record all or some of the audio traffic. Furthermore, it
is often necessary to conference all or some of the channels (so that all those involved can fully follow
the progress of the test).

This paper describes the philosophy and design of a sixteen channel intercom system specifically
intended to support the needs of the military test community.

2. Requirements

For our initial design, we attempted o encapsulate as many operational requirements as possible. We
foresaw the need to allow flexible communications between operators, radios, and recording devices.
We also projected a requirement to connect the intercom to external, non-system devices. To these
ends, we specified the following initial requirements:

1) The system needed fifteen stations (four "manned" or "operator" stations, four VCR stations,
three radio stations, two generic stations, and two expansion stations). See figure 1.
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Figure 1 -- Intercom Station Requirements

2) Operator stations need headset jacks and external speakers (with volume controls). The headset
jacks include microphone connections. The stations also need keypads so the users can configure

them to their communications requirements.

3) VCR stations interface with video recorders used to record communications during tests and
operations. These stations require keypads (to select which sources to record) but do not need

headset jacks, external speakers, or microphones.

4) Radio stations interface to either VHF or UHF radios. These stations need circuitry to key the
radios when a connected station keys its microphone and must also "blank" all out-going audio during
transmission. Radio stations do not need keypads, headset jacks, external speakers, or microphones.

5) Generic stations are intended to receive or send audio to/from non-intercom devices. These
stations have only audio in and out lines and have no controls.

6) The system must be completely non-blocking and fully programmable.
7 Complex configurations (set by users) must be easily saved and restored.
8) Frequency response must be 100-7000 Hz (or better) for audio communications.

9) The system must support multiple "nets" (or conferenced communications).
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3. Approach

We quickly decided that a fully non-blocking system would best be implemented with centralized
mixing. That is, incoming audio from each station is appropriately mixed at a central location (rather
than in each remote station). This allows us to have a single send and receive pair of audio lines to
each station and dramatically reduces the cabling requirements.

Deciding how that audio is to be mixed poses another problem. While some parameters can be
specified at system startup (in our case in a configuration file), the operators can dynamically change
their configurations with their keypads. We decided, therefore, that each remote station would have
a micro controller to communicate with the central unit and control the local keypad and lights. The
communication to the central unit would be serial (RS-422, 9600 baud).

The central unit would be responsible for monitoring all remote station communications and mix all
incoming audio to generate the correct outgoing audio (for each station). To do this, the central unit
needs digitally-programmable analog switches to properly route each incoming audio line to specific
summing circuits. The switches must be robust enough to allow any combination of incoming signals
to be combined and sent to any station. The central controller needs to be capable of translating all
the received communication (from the remote stations) into appropriate commands to program the
switches.

These design decisions gave us complete, on-the-fly flexibility with respect to which audio signals will
be routed to each station. We could easily implement a fully configurable and non-blocking
intercom... and easily implement the conferencing capability (nets).

We further decided to design a single remote station circuit board that could be easily configured as
any of the three primary stations (manned, VCR, or radio). Most of the circuitry is identical from
station to station, and a few judiciously placed jumpers let us simplify manufacturing dramatically by
limiting the number of unique components.

Meeting the frequency response requirements is not difficult with the abundance of proven, off-the-
shelf audio circuits available today. Our approach here was to use very simple, text-book circuits to
mix and amplify the audio signals. We also decided to transformer couple all audio input and output
stages to eliminate line noise and 60 cycle hum.

4. Design
4.1. Central Unit

We chose to use the Analog Devices AD75019 (16x16 Crosspoint Switch Array) to route all
incoming audio signals to the proper summing circuits. This part allows any of sixteen input signals
to be routed to any of sixteen output pins, and can be programmed on-the-fly by a serial stream of
bits, a shift ciock, and a programming strobe. The input signals are first conditioned by a simple
amplifier circuit (using a TI TLO84 operational amplifier in an inverting configuration). The output
signals from each crosspoint switch feed a 16-input summing circuit (also implemented with a single
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TLO84). See figure 2 for an example. For sixteen stations, we need sixteen switches and sixteen
summing circuits.
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Figure 2 -- Audio Mixing (One Channel)

The central unit also has sixteen RS-422 transceiver chips to communicate with each remote station.
To simplify the circuitry, we decided to "multiplex" the serial communication for each remote station.
That is, the central controller need only have a single serial port and the system board must have
circuitry to select which station is connected at any given time.

By far the most difficult task for the central unit to tackle is correctly programming each switch for
the almost limitless combination of connection possibilities. To ease the task, and to keep costs very
low, we opted to use an embedded PC for the system controller. This allowed us to develop the
controller code on a desktop PC (using Borland Pascal). A basic PC motherboard (386 class) costs
less than $130, and even with all associated hardware the total cost of the controller is less than $500.

Since the PC already has a serial port, we added an RS-232 transceiver to the system board. We also
decided to use the PC's parallel printer port to provide high-speed data to the system board (for the
purpose of programming the crosspoint switches and selecting with remote station to communicate

with). See figure 3.
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Figure 3 -- Intercom Block Diagram

The last task we had to tackle on the system board was how to translate the PC's parallel commands
to program each switch and select each remote station. Here we used a single Xilinx 4005 (which
is a field programmable gate array or FPGA). This particular part has 112 I/O pins, 616 internal flip-
flops, and approximately 5000 logic gates. Using a schematic capture package (Viewlogic's
Workview), we were able to easily build the required glue logic in one chip. The FPGA converts the
parallel data into a serial stream to program each switch and contains a state machine that generates
the necessary clock and programming strobes. The FPGA also multiplexes the serial communications
data based on a station number provided by the PC. Also, because the part is easily programmed, and
because we used less than 20% of its available capacity, we've left ourselves with considerable room
for adding features and capabilities in the future.

All analog signals to and from the central unit pass through 600 ohm coupling transformers, and we
adjusted the signal levels to the industry standard of 1 VPP max.
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4.2. Embedded PC

Although we could have bought a true "embedded"” PC, we opted to purchase motherboards intended
for desktop systems. They are readily available and usually one-tenth the price of embedded systems.
We bought two 3.5" drives for the PC... the "A" drive is enclosed in the case while the "B" drive is
accessible from the front panel. The A drive holds the boot floppy disk and automatically loads the
intercom's executive program. A configuration file (located on the boot floppy disk) sets up the initial

parameters.

Once the intercom's executive program is running, the intercom is operational. At any time the
operator can "save" the current configuration (including all connections selected on the keypads) by
pressing a button on the front panel. The configuration is saved as a binary image on drive B (the

accessible drive).

The intercom's executive program continually "polls" each remote station (10 times/second). The
stations return their status, including which keys (if any) had been pressed. The program then
calculates the correct crosspoint switch patterns are necessary to implement the function and
reprograms the appropriate devices. The program also sends instructions back to the remote station

(to light buttons, change button colors, or key the radios).

4.3. Remote Stations

Each remote station circuit board contains a microphone interface. By removing a single jumper, the
microphone is disabled and the board can accept input from a radio or VCR. The audio is
conditioned to 1 VPP (max) and transformer coupled before it leaves the remote station box (bound

for the central unit).

Audio coming from the central unit is also transformer coupled. Each remote station board has all
the necessary components to drive a headset speaker and an external speaker. Each speaker has a

separate volume control.

The heart of the remote station is an Intel 8751 micro controller. The 8751 runs a tight loop in which
it scans the 18-key keypad, multiplexes the keypad LEDs, and handles all the serial communication

from the central unit.

As the 8751 scans the keypad, it debounces the keys and prevents run-on and roll-over. It
subsequently lights the individual LEDs by multiplexing the LED control lines (only 6 of the 18 LEDs
are actually on at any given time). The LEDs are two color, but by rapidly changing current
direction, we get four states: OFF, RED, GREEN, and YELLOW. It is up to the central unit to
decide which LEDs are to be lit and what color they are to be... the remote station is acting primarily

as a "dumb terminal".

The 8751 also senses the state of the microphone key and passes that information to the central unit.
It can also close a relay (which causes the radio to "key") when so commanded by the central unit.
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5. Conclusion
SAIC built and delivered two of the systems discussed above to the Office of the Test Director.

We were successful in meeting our original design specifications. The SAIC system, now named
FlexComm I, is fully non-blocking and completely programmable. It integrates seamlessly with radios
and recorders. The system is robust in that we built in a lot of error and status checking as well as
integrated "watchdog" timers to monitor CPU operation. All of the audio lines are transformer
coupled, and the digital serial communication lines are all differential.

FlexcComm [ also has a number of features difficult to find in off-the-shelf systems. For instance,
operators can select to talk and listen (on a conference net) or only to listen. Also, microphones can
be configured to require keying or may be set as "hot". Furthermore, the systems may be "bridged"
(essentially "linking" two or more FlexComm systems together). These connections allow
communication between workgroups, while still retaining control and security within each local
workgroup.

FlexComm I has excellent frequency response (50Hz-10KHz) and is reasonably inexpensive to build
(about $1.5K/station). All in all, FlexComm [ is a near perfect match for the requirements of the test

community.
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Automating the IV&YV of RWR Operational Flight Programs and Mission Data Bases

C.K. Cole*
J.F. Corbett

Georgia Tech Research Institute
Atlanta, Georgia 30332-0829

Abstract

Because of the vast improvements in chip technology, today’s avionics systems are being
designed with more memory and greater programmability than was once thought possible. A
typical avionics system going to the field ten years ago had a memory capacity of 64 to 128
kilobytes (KB) with hardware that provided little if any programmability of system functions.
The avionics systems of today commonly employ 1 megabyte (MB) or more of memory and
often include so-called “register-programmable” devices that define much of the hardware.

In the case of a radar warning receiver (RWR), this tremendous memory expansion has
provided the opportunity for the writers of RWR Operational Flight Programs (OFPs) to include
many new software capabilities. It has also provided the opportunity for writers of RWR
Mission Databases (MDBs) to include threat identification parameters for many additional
threats in the MDB.

Because the OFPs are more complex and because MDB writers often add but rarely
delete threats, there are many more software algorithms to test and many more threats to simulate
and run against an RWR under test. Thus, the independent verification and validation (IV&V)
process has become much more demanding, and some automation of the process is necessary to
ensure adequate system testing within a reasonable budget.

The traditional method of verifying an RWR MDB is to first have a threat generator
output a signal that simulates the signal of a threat system programmed in the MDB and then to
have a test engineer visually check the output display of the RWR and make a notation of the test
results. This process is repeated for every threat and threat mode programmed in the MDB,
which could be 500 or more simulator files. The test takes days to accomplish and provides little
or no system performance statistics other than correct identification (ID) of the threat.

An automated test process accomplishes several objectives. First, the entire one-on-one
test phase can be completed in a timely fashion, and preferably overnight; this makes the test
process less costly and less time consuming and frees the expensive threat generators for other
tasks during normal working hours. Second, because automated tests can be run more quickly
and economically, it encourages complete retesting after an OFP or MDB change. Third, the
automated test can generate many system statistics such as response time, direction finding (DF)

accuracy, correct ID, etc. Fourth, the automated test is more repeatable and less prone to human
error.
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This paper discusses the process of automating some phases of the Radar Warning
Receiver system validation. This process begins at the start of hardware design and continues
through the development of the automated test software that controls the running and scoring of
the test.

Introduction

Radar warning receivers (RWRs) are designed to search for signals from hostile radar
systems and to warn an aircraft pilot of the presence of those systems. RWRs can detect signals
from all types of radar systems (search, acquisition, target tracking, missile guidance, etc.). Once
the signal has been identified, the aircrew is given a warning signal, usually both aural and
visual, and an approximate indication of the location and type of the threat.

RWRs were first developed during World War Il and were originally only used in
bombers. During the Vietnam War, the North Vietnamese used radar-guided surface-to-air
missiles (SAMs) against US Air Force and US Navy fighters with astounding success. The
resulting losses triggered the US Air Force and US Navy to develop countermeasures to these
threats. Thus began the proliferation of RWRs into all types of military aircraft.

The early RWRs provided no detailed threat identification. Instead, the RWR simply
monitored a range of frequencies and displayed the bearing of the detected signals on a cockpit-
mounted display. Although the technique was simple, it worked very well. Within months, a
combination of RWRs and Wild Weasel anti-radar strikes brought the SAM kill rate down from

50% to 3%."

Modern RWRs provide detailed threat identification to the aircrew. Detailed threat
identification is important because it allows the aircrew to decide what action, if any, is
necessary. If the hostile radar is a missile tracking radar or a radar on an airborne interceptor,
then the crew must immediately begin maneuvers to defeat the threat. On the other hand, a long-
range surveillance radar may require no action at all.

Threats are identified by comparing parameters such as frequency, pulse repetition
interval (PRI), pulsewidth, scan pattern, and scan rate against a database of all known threats as
reported by intelligence sources. The computer software that performs the threat identification
process is known as the Operational Flight Program (OFP) and the database that contains the
threat parameters is known as the Mission Database (MDB).

As recently as 10 years ago, a typical RWR might contain only 64 to 128 kilobytes (KB)
of read-only memory (ROM). This severely limited the size and complexity of OFPs and MDBs.
Software updates were also costly because the ROM chips could not be reprogrammed onboard
the aircraft. A typical RWR in the field today contains 500 KB to several megabytes (MB) of
clectrically-crasable programmable read-only memory (EEPROM). This tremendous memory
expansion has allowed OFP writers and MDB writers to add sophisticated software algorithms to
counter the hostile threats in the world today. Also, because EEPROM is easily programmable
onboard the aircraft, the aircrews now demand rapid OFP and MDB updates.’
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The combination of more complex OFPs, larger MDBs, shorter schedules, and slimmer
budgets adds a new dimension of difficulty in designing an adequate test process. However, by
using technologies available today, testing and independent verification and validation of RWR
soltware can be accomplished in a thorough manner within schedule and budget constraints.
This paper describes techniques that systems, hardware, and software engineers should consider
when attempting to improve system testability.

RWR Testability Issues

There are numerous issues that are of concern in determining the testability of an RWR.
Of these, data visibility and OFP intrusion are the two most important. The following defines
these terms as they will be used throughout this paper.

“Data visibility” refers to internal OFP variables being conveniently available external to
the RWR for electronic recording and manipulation. If internal OFP variables (or files) are not
visible outside of the RWR, then the RWR will be difficult, if not impossible, to test. Traditional
RWR testing has relied on the RWR display as the sole data source for determining test results.
Because of the additional complexity of today’s RWR OFPs and MDBs, this method is no longer
sufficient. With current technology, much more data visibility is easily achievable.

“OFP intrusion” refers to the processing cost of dumping OFP data to an external
interface. It is desirable to make internal OFP files observable to the outside world without any
impact to the normal operation of the OFP. Any software action that is not directly related to the
interception, identification, and display of a hostile radar system is “intruding” upon the normal

RWR OFP operation. Obviously, some processing time is required to dump OFP files to the
external interfaces, but designers can minimize this impact.

Hardware Design Issues

Thorough and efficient testing of RWR software is possible if the following rules are
observed during the hardware design process.

> Outfit the system with a high-speed external interface.

> Provide connectors to the high-speed interface so that it is easily accessible from the
outside of the box housing the system.

> Design an embedded processor that is dedicated to servicing the high-speed interface.

Providing a High Speed Interface

There is at least one RWR that was fielded during the Vietnam War that is still in use
today. This RWR must use an RS-232 interface for dumping OFP files to external devices.
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Because the RS-232 interface 1s so slow relative to the speed of the embedded processor, the
RWR display goes blank while data is being dumped. This happens because the normal
operational timing of the RWR is totally disrupted by the dumping of test data.

Most RWRs going to the field in the 1990s include one or more MIL-STD-1553B data
busses. MIL-STD-1553B (1553, for short) is a high-speed (1 megabit/second) serial data bus
protocol. It is typically used to support integration of EW devices by allowing these devices to
communicate with each other. Because of this communication medium, the various EW devices
can act in a concerted manner to defeat a hostile threat. The 1553 bus is also a suitable interface
for dumping OFP data for test purposes.

Providing Connectors to the High-Speed Interface

Once the RWR is outfitted with a high-speed interface, it should be provided with
connectors that allow for easy and inexpensive hookup to test devices. Any interface that is of a
custom design or requires custom connectors or cabling should be avoided. A ready solution to
the problems of connectors is provided by MIL-STD-1553B; 1553 data bus couplers and cables
are readily available at a reasonable cost. The use of standard 1553 connectors also provides
direct access to the physical RWR 1553 bus wiring, since the 1553 is so often used to allow the
RWR to communicate with external EW devices.

Dedicating a Processor to the High-Speed Interface

In order to minimize the software intrusion on the master RWR OFP, the high-speed
interface should be designed with a microcontroller dedicated to the servicing of the interface.
This increases the cost of the RWR, but it will provide a measurable performance improvement.
By allowing the master OFP to be concerned only with sending data to and getting data from this
processor, the test data transmission should take no more than ¥z of 1% of the total processing

time of the master OFP.

If the only foreseen usage of the 1553 bus is to dump data for test purposes, then the
dedicated processor may be omitted. However, such an omission may be a very shortsighted
decision if one considers the future of EW systems. Integration of EW systems, usually via a
1553 data bus, is becoming more and more common, and in integrated systems, the message
traffic on the 1553 interface can be very heavy. Thus, a processor dedicated to the servicing of
the 1553 bus is a very good long-term investment.
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Interface Design Issues

Whether the RWR has been outfitted with a 1553 data bus or some other high-speed
interface, there are several interface rules that must be followed in order to enhance system
testability. These rules are listed below.

=> Allocate interface resources for dumping of internal OFP files.

<> Design multipurpose interface messages that will support both EW integration and OFP
testing.

Allocating Interface Resources

An interface control document specifies the message formats and message transmission
rates for an interface. It is natural and important that interface messages necessary for
operational performance get top priority when interface resources are allocated. However, in
order to ensure that RWR systems are maintainable and testable, it is important that interface
resources are allocated to provide for the transmission of internal OFP files that have no real
operational value to the system.

In the case of 1553, this means allocating 1553 bus bandwidth and 1553 subaddresses for
test messages. Depending on the system, 1553 subaddresses are typically not a problem
compared to bus bandwidth. Many 1553 busses have very heavy message traffic and many
persons are reluctant to squeeze in messages that obviously have no operational value. However,
these same persons are usually the first to demand rapid OFP and MDB updates. The user
community must be convinced that the availability of internal OFP files on the 1553 data bus is a
key issue in decreasing the amount of time required to complete a software update. These test
messages dramatically increase the observability of RWR data, which subsequently increases the
productivity of OFP testing and IV&V.

Designing Multipurpose Messages

Many interface messages can be used for both EW integration and OFP testing if the
messages are formatted appropriately. For example, one of the most common RWR OFP files is
the Emitter Track File (ETF). An RWR ETF record will contain hundreds of data elements that
store known information about a threat being tracked by the RWR. It is common for an RWR
ETF record to require 128 to 256 16-bit words to store all data relevant to a threat.

In all integrated EW suites known to the authors, an RWR ETF message is part of the
1553 data bus traffic. The other devices on the 1553 bus (jammers, chaff/flare dispensers, etc.)
use data elements from the RWR ETF record to select an action to take against that threat. While
an EW device may be interested in one subset of data elements, a person debugging an OFP may
be interested in another. The former may use a portion of the ETF to determine when to release a
flare, while the latter may use a different portion of the ETF to determine the ID of a threat.
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When adding test-specific data to the 1553 bus traffic, the interface designer must be
careful to avoid duplication; the 1553 bus bandwidth is too precious and such duplication is
unnecessary. All 1553 messages should be formatted such that the message is suitable for use by
all parties interested in the message: EW devices on the aircraft 1553 bus, OFP debugging tools,
and automated IV&YV tools. Also, since 1553 messages are only 32 words in length, an entire
ETF record cannot be transmitted in one message. Therefore, the interface designer is challenged
to include all of the data elements needed by all destinations into one 32-word message.

Software Design Issues

Humphrey states, “Ensure that testability is a key objective in your software design.”
There are many rules that OFP writers can follow to improve the testability of RWR software,

but the following are the two of the most crucial.
= Define the most critical OFP data elements for output to the high-speed interface.

= Minimize intrusion on the OFP when dumping test data.

Selecting OFP Files to Output

Whatever external high-speed interface is used for dumping data, it is very unlikely that
the OFP writers will have the resources available, either in processing time or interface
bandwidth, to dump every OFP data element that would be useful for debugging. Therefore,
OFP writers must select a limited subset of OFP data for sending out of the RWR for OFP
debugging and validation. This selection must be done early in the project and must be done
accurately, since interface designs are much more painful to change than are software designs.

Minimizing OF P Intrusion

The OFP writers must make every effort to spend as little processing time as possible to
send OFP data to the high-speed interface. Minimizing OFP intrusion is important for several
reasons. First, every second that is spent transmitting messages is a second that is not spent
identifying potential threats to the aircraft. Second, ensuring minimal interference with normal
OFP operation means that OFP operation in the laboratory will more accurately represent field

operation.

One simple way to minimize the processing time required to output OFP data is to format
the OFP data in the same manner as the message traffic on the high-speed interface bus. For
example, if a 1553 bus is used to dump Emitter Track File records, the software engineer should
format the first 32 words of the ETF record identically to the format of the ETF Record Message
on the 1553 data bus. If this is not done, then the OFP writer will have to write a subroutine that
reformats the ETF record to that of a 1553 message on the fly, wasting precious processing time.
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Another way to minimize OFP intrusion is to design semaphores into all the messages
that allow the dumping of data to be disabled when a message is not being transmitted on the
external bus. For example, if the OFP has an internal file that is critical to transmit over the bus
for OFP testing but is not useful in an operational configuration, then the software engineer
should design the OFP software such that it will recognize when a message need not be
transmitted. Then, when the message is not needed, the processor will not waste any additional
processing time on that message.

Tools Design Issues

Excellent tools greatly increase the productivity of engineering teams. OFP debugging
tools and automated tools for IV&V engineers are needed to decrease the time required to do
software updates and to increase the accuracy and robustness of testing.

Among the first issues to be decided when developing tools for OFP debugging and
IV&YV automation is the choice of computing platform. The computing horsepower available in
a common personal computer (PC) today is adequate for most IV&V tasks, and many companies
sell circuit cards that upgrade PCs for many of the popular high-speed interfaces such as MIL-
STD-1553B data busses. The PC hardware platform provides a very inexpensive (approximately
$10,000,* compared to custom hardware designs which might cost $1,000,000 or more to
develop) development environment that can be upgraded, and for which ongoing software
enhancements are readily available.

Using a PC with 1553 interface capabilities, software engineering teams can write
sophisticated and user-friendly tools that will extract data from the RWR via its 1553 interface.
The PC can then store the OFP data for later viewing, or the PC can display the data in real time.
These software tools are relatively easy to develop and maintain. In addition, many of the PC-
based software algorithms that are developed for OFP debugging tools can also be used to
develop automated IV&V tools. In particular, the low-level 1553 drivers and 1553 message
parsing routines can easily be shared between OFP debugging tools and automated IV&V tools.

RWR Testing

At this point it is important to question why so much attention is being given to RWR
testing. The fact is, it has been proven over and over that software such as an OFP is written
once, but it is maintained forever.” While it is true that new software is written during every OFP
block cycle update, the amount of time spent writing the software is dwarfed by the amount of
time spent testing new software. Therefore, if the block cycle schedule is to be reduced, the
testing process must be improved.

In a typical block cycle update, the software changes are identified, and OFP writers
begin a cycle of modifying, testing, and retesting the software until the system appears to operate
correctly. Then, the OFP is turned over to an IV&V engineer who will verify that the RWR
meets the system requirements. If the IV&V engineer finds a deficiency, the OFP modifying and
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retesting cycle is repeated. This cycle of OFP testing and IV&V continues until the system
passes IV&V.

Because the IV&V process occurs near the end of the OFP block cycle update, the IV&V
engineer is invariably going to be under severe scheduling pressure, through no fault of his own.
At the point that an OFP is finally turned over for IV&V, the block cycle is usually well behind
schedule, the first flight test is already scheduled, and everyone is panicked because no one wants
to delay flight testing. Therefore, the IV&YV process needs to be fast because schedules rarely
allows a fair amount of time for IV&V. It should be as free from human error as possible, since
engineers will be under a great deal of pressure and will be prone to mistakes. Finally, the
process must be accurate because it is very embarrassing for an IV&V engineer to approve an
OFP and then have multiple problems at a flight test. Automation of the IV&V process will help

conquer all of these problems.

RWR IV&Y Process

The traditional process used to do IV&V consists of three major phases: one-on-one
tests, combinations, and dynamic scenarios. In the one-on-one tests, the test engineer generates
signals to simulate every mode of every threat that the RWR is programmed to intercept. This is
a “static” test, meaning that the simulation is done in such a way as to simulate a stationary
aircraft against a stationary threat site. In the combinations portion of the testing, the test
engineer picks selected combinations of threat signals that will stress the system; this is also a
static test. In dynamic scenarios, the aircraft is simulated in motion against fixed threat sites on
the ground. The following will focus on the one-on-one case, although the automation concept
described will also work well for combinations.

Over the years, the one-on-one testing phase has grown from less than a hundred to
nearly 500 “files” (a “file” is a threat generator script that generates an RF signal to emulate a
particular threat in a particular mode). This one-on-one phase of IV&V takes two persons about
one week to complete. During this one-week period, the IV&V engineer will run each threat file

at only one selected angle and one selected power.

The traditional manual method for doing RWR IV&V works as follows. There is an
IV&YV engineer sitting in front of the RWR display with his list of threat generator files. There is
a technician sitting in front of the threat generator computer terminal. The IV&V engineer calls
out a filename. The technician enters computer commands to load and run a threat file. The
engineer and the technician wait for the threat generator to start its simulation. The IV&V
engineer observes the RWR display and marks a grade for that file depending on what he sees on
the RWR display. This process is repeated for every threat and threat mode in the RWR MDB
(500 or more files). It is really a credit to the dedication of the IV&V engineers and technicians
that they can complete the one-on-one phase of IV&YV in one week; it is a very laborious task.

The computing platform for the automated IV&YV software can be a personal computer.

The PC software can be written to follow test scripts generated by the IV&V engineer. From
these scripts, the PC can direct the output of the threat generator, monitor the output of the RWR
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under test, and grade the results based on pass/fail windows programmed by the IV&V engineer.
Because the automated IV&V could be run outside regular work hours, it could be stated that it
requires zero persons to run.

Automating the one-on-one phase of IV&V would accomplish the following additional
positives objectives.

=> Using automated test methods, the one-on-one phase of IV&V can be completed in much
less than a week. It is believed, but not proven, that an automated test method could
complete the one-on-one portion of IV&V in one 24-hour period. Remember that the
OFP editing, OFP debugging, and IV&V processes are a loop that is repeated until the
system passes IV&V. Many times when an IV&V fails, the OFP writers make a “minor”
software modification and resubmit the RWR system for IV&V. In these cases the RWR
community is very tempted to skip complete IV&V in favor of a “mini” IV&V. If the
one-on-one testing could be done in one day rather than one week, then this temptation
would be much easier to resist.

=> Automated test scoring is quantitative, consistent, and objective. Humphrey states
“Avoid nonreproducible or on-the-fly testing.” For the traditional IV&YV process, the
steps of the test are repeatable, but the scoring is not consistent because it is qualitative.
Consistent scoring gives an indication of whether the RWR system is maturing over a
long period of time and is constant regardless of the engineer assigned to lead the IV&V
task.

=> Mathematicians would correctly argue that one sample taken in the manual IV&V process
is not a statistically-valid number of samples. The automated process would allow for
each threat file to be quickly tested many times to ensure that the RWR always gives the
correct response.

=> Many more statistics can be measured. In the manual one-on-one process, the only
measure of RWR performance that is measured is correct ID. Other measures of
performance such as response time, detection range, DF accuracy, etc., are not measured.
The automated IV&V could provide the data necessary to calculate these statistics.

=> Report charts can be generated automatically by the automated test software.

Summary

With the quantum improvement in semiconductor technology over the past ten years,
RWR system designers have created RWRs with hundreds of thousands of bytes of nonvolatile
memory. As inevitably happens when there is more memory, the operational software and
databases have expanded to fill the newly available space. This expansion has complicated the
task facing IV&V engineers.
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In order for IV&V engineers to continue doing their work effectively, there must be
improvements in the tools and processes available for accomplishing IV&Y. Better tools must
include better, quicker threat generators, but the most crucial element now missing in the IV&V
suite is an automated method of conducting IV&V. With automated testing methods, IV&V
measurements can be taken more quickly, and more thorough testing can be done. With a
combination of improved threat generators and automated testing tools, it is possible to complete
one-on-one testing within a single 24-hour period, including exhaustive tests of correct ID, DF
accuracy, detection range, and response time for all threats and threat modes.
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Streamlining Automated Test File Generation
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Abstract

Before the end of this century, the rapidly increasing number, size, and complexity of embedded
Operational Flight Programs (OFPs) will present an enormous testing and support burden to the
Air Force. AutoVal, the automated testing toolset pioneered by the Avionics Logistics Branch of
Wright Laboratory (WL/AAAF) and SAIC, is a key technology for solving this problem. AutoVal
has demonstrated more than a 100-to-1 reduction in the time required to perform OFP validation
testing. While AutoVal has completely eliminated the test engineer hours needed to actually
conduct an OFP validation test, test engineers still have to generate the test command files,
initiate the test, and review the test results. Generation of the test file, the commands that
orchestrate the operation of the test station to stimulate, monitor, and verify proper OFP
operation, has now become the most time-consuming step in the testing process. SAIC is making
two enhancements to AutoVal to streamline test file generation. We are making AutoVal more
user friendly by adding a language sensitive editor and on-line help to it's X/Motif-based graphical
user interface. We are also adding a “Learn Mode” that will speed the development of test files
by monitoring a test engineer's actions while manually performing a test and automatically
creating a test file to reproduce those actions. This paper describes these new features and how
they will further reduce the cost and increase the effectiveness of testing embedded software in
modern aircraft.

Background

Under the sponsorship of the Embedded Computer Resource Support Improvement Program
(ESIP), WL/AAAF has conducted research to reduce the cost and improve the performance of
avionics software support and testing. WL/AAAF investigated ways of reducing the time
required for Operational Flight Program (OFP) validation testing. This research led to the
creation and evolution of the Automated Validation (AutoVal) Tool Suite. Recent modifications
to the AutoVal environment include an extensive redesign of the user interface, a command
palette to assist when editing test scripts, and a learning feature used to generate command files.
These new items are discussed in detail in the following sections. This section highlights
AutoVal’s main features and benefits. Refer to the papers listed in the Bibliography for more
background and a detailed review of AutoVal’s capabilities.

The AutoVal Program allows a user to perform real-time testing of emulated OFP software
software by completely automating the actions of the test engineers. AutoVal automates the
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testing process through direct control of the host test station. It performs both the stimulus
required for the test and verification of the test results. The user manipulates the test station
simulation using a test-oriented command language, which provides access to the system through
shared memory and performs logical, arithmetic, and decision-logic operations. This command
language resembles natural English and is carefully tailored to the testing environment. Test
engineers can generate reusable command files that configure and initialize the simulation, control
the simulation flight dynamics and avionics modes, verify test results, and automatically create test
logs. AutoVal can be used to support all phases of testing from static unit test, through
subsystem and integration test, to formal qualification test.

The AutoVal test environment may be tailored by the user via test command files, macros,
switches, and symbol definitions to support a variety of different applications. At the highest
level, test command files are created to express the validation and reporting process for the
application. Macros are defined to tailor and expand the native AutoVal command language.
Switches and symbols tailor the test environment and provide a familiar Jow-level interface to the

application system.

Command files can be small units used to encapsulate a function or procedure on the application
system. Conversely, command files can be large, complex test cases utilizing many building
blocks in the form of other command files, macros, switches, and native commands. Command
files change and evolve to match the testing requirements of the system being tested. Command
files are the highest level tool, available within AutoVal, which can be used to tailor the test
environment to a specific system under test.

Macros are user defined commands which can utilize several parameters. Macros can consist of
generic, native commands, calls to command files, and other macros. For most purposes, once a
macro is defined, it can be used over and over in the same way as any of the native commands.
This allows the user to build libraries of commands which best fit the particular problem domain.

A large percentage of typical avionics and other test procedures involve actions performed by an
operator (e.g., pilot) through various controls and control panels that influence the operation of
the system under test. Many of the switches, buttons, and knobs used to input avionics data are
very unique both in appearance and function. AutoVal needed a generic way to allow users to
define not only the syntax of a switch (i.e., its name and positions), but also to associate the
desired behavior with each switch activation. AutoVal's switch commands provide just that.
Users define names, attributes, and position titles. Distinguishing between push-buttons, toggle-
switches, and knobs is completely controllable by the user.

A feature used to tailor the AutoVal command language to specific applications and individual
users are the symbol definitions. AutoVal symbols are used to provide a symbolic representation
of system data. This allows test engineers to reference data using meaningful, symbolic names. In
addition to making command files more useful and understandable, shared memory changes,
minor system modifications, and recompiles don't require large changes to existing command files
when symbolic representations are used in command file development.
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X-Windows/Motif User Interface

A new AutoVal user interface (refer to Figure 1) has been designed and implemented to provide
an efficient, integrated testing environment. The new AutoVal user interface is implemented
using X-Windows/Motif and the Systems Engineering Research Center (SERC) Ada-Motif
bindings. AutoVal currently runs on the Sun SPARCstation series of computers using the UNIX
Operating System, specifically Sun O/S Version 4.1.3 with X-Windows(X11R4)/Motif(1.1.3).

MenuBar — ile fdb Leass Ophiaw

{untitled> - Log File

Log File » '
Window

<unt1tied>

Edit
Window
Status
Command> Status> AutoVal Started <t field
Command »
Line
Control Execute Single Step
Buttons —

Figure 1. AutoVal Main Window

The new AutoVal user interface was designed to be easy to use. A tool with a cumbersome,
complicated user interface is always a source of frustration for users. The user can move among
the AutoVal menu options and windows easily using the mouse. Most menu options may also be
selected directly by typing the corresponding "hot keys" displayed to the right of the menu
selection. For those who prefer more hands-on control, AutoVal's unique command line feature

incorporates an interactive capability to provide immediate feedback during testing and
development.
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The AutoVal Main Window, the central user interface component, utilizes a large form with a
main menu for control of all primary AutoVal functions. This form provides a command line field
for use during interactive command operation and incorporates an edit window for displaying and
editing AutoVal command files. The form also contains a separate log window for displaying log
file data and error messages. It presents status messages in a status message field. The inputs and
displays associated with each of these fields have been tailored to the needs of the interactive
AutoVal user. Users may choose to exercise AutoVal interactively when: 1) creating new
command files; 2) defining macros, switches, and symbols; 3) debugging user defined command
files; 4) debugging the simulation environment; and 5) operating the system in a "hands-off"
mode.

AutoVal allows the user to interactively execute individual commands or command files. This is
accomplished by using the Command Line. This command line interpreter provides for the
parsing and syntax/error checking of the commands.

The edit window acts as a history for all of the commands entered via the Command Line. The
user can scroll through the edit window to view previously entered commands or to copy and
paste text into the Command Line. The edit window also provides a centralized area for general
editing and command file generation. The contents of this window can be written out to a text
file to save commands that have previously been entered. The saved commands can then be
loaded into the edit window for re-use or editing purposes at a later time. AutoVal permits the
command file located in the edit window to be opened or closed during an editing session.
During such a session, AntoVal provides standard Cut, Copy, Paste, and Delete menu options for
command file editing. In addition, AutoVal allows the user to syntax check or “load” the contents
of the edit window.

Each time AutoVal is executed, a log of various messages and command responses is displayed in
the AutoVal log window. This scrolling log provides a reviewable record of the AutoVal session
including all status, informational, warning, and error messages generated during the session. The
log can be very useful to a user executing command files or using AutoVal for interactive testing.
In addition, the log can be saved to a disk file for later viewing. The saved file is an ASCII text
file and can be printed or viewed using appropriate tools. This saved file is valuable for producing

test reports.

AutoVal status command. However, AutoVal also uses this field to display information when
The Status field normally displays data written to the screen by the execution of an loading or

pausing a file.

The new AutoVal user interface also allows the user to open multiple “view-only” files. These
“view-only” files appear in separate display windows and can be used for reference while working

in the main AutoVal window.
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Command Palette

The Command Palette (refer to Figure 2) is a tool provided to assist the user with language
sensitive editing of AutoVal test scripts when generating command files. The Command Palette is
available to the user through the Edit menu of the main AutoVal window, and is generated in a
separate X-Windows/Motif “window”. The window contents are available to the user during the
entire editing process until closed by the user. The Command Palette displays AutoVal native
commands as well as previously loaded AuioVal macro, switch and symbol names in separate
areas. Selections from the Command Paletie are copied directly into command files in the
AutoVal edit window. The user can quickly select items from the command palette, thus
reducing the amount of time needed to type the name, look up the syntax, or remember the syntax
and correct usage of each item.
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Many of the Command Palette design features were created and refined by building X-
Windows/Motif prototype screens with UIM/Ada. UIM/Ada is a Graphical User Interface (GUI)
builder for the Ada language. With UIM/Ada, X-Windows/Motif user interfaces are created
quickly and easily. The tool was very intuitive to use and allowed developers to determine not
only the overall look, but also the feasibility of a design. A more user-friendly Command Palette
with easy to use and convenient features was the result.

The user interface component of the Command Palette consists of a form with a main pulldown
menu and four scrollable display areas that list the names of previously loaded macros, switches,
symbols, and commands. The menus allow the user to access the main Command Palette
functions and features and often use cascade menus to display easy to access information. The
help and exit options are similar to those used on the main AutoVal window. Using UIM/Ada,
two prototypes of the Command Palette were designed. A narrow window displaying the four list
areas in a single column, and another displaying two lists per column. As the Command Palette
will be viewed on the same screen as the main AutoVal window and other windows, the narrow
design was used to avoid a cluttered screen for the user.

When the user invokes the Command Palette, the initial screen alphabetically displays all
commands, switches, symbols and macro names. This is potentially a large amount of
information, particularly for symbol definitions. The user can choose to reduce the amount of
data displayed in the macro, switch or symbol lists by simply selecting a filename. This filename
acts as a filter on the appropriate list thereby only displaying data from that particular file. This
results in a smaller, more concise list of data for the user to manipulate.

The user can access the list of filenames through the main menu or by a mouse press on the list
title. The titles for the switch, symbol and macros list are designed to resemble push-buttons.
Although these title labels do not operate as push-buttons, their appearance is a reminder to new
users that these labels have an associated function. By using the mouse on this label, a popup
menu displays the same list of filenames accessible via the main pulldown menu.

When a single file is selected for display, the notation, “< >, will be placed around the list title
(i.e., < Switches >) to remind the user that a reduced list is being presented. This notation is used
in lieu of displaying the actual filename, as filenames would be too long and cumbersome to
display. Both areas allowing filename selection use radio button displays. When a filename is
selected, the button for that filename appears depressed. The user need only click the mouse on
the list title label to display the list of filenames and check the name of the presently displayed file.

A powerful feature of the Command Palette is the ability to supply syntax information for
commands and macros. From the user’s perspective, many of the commands and macros have
complicated syntax which can be difficult to remember. For similar reasons, it is also desirable to
provide a means to display the various switch positions. To implement these features, pop-up
menus were designed for each individual list item (i.e., each command name). By using a simple
mouse action, the user can easily select the name, or additional information if available, for
commands, macros, and switches. (For symbols, only the name would be displayed.)
Conceptually, providing popup menus for the user was straightforward. However, a simple Motif
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list widget could not be used since it does not provide popup menus for each list item. As a
result, each list item is designed as a separate widget (a text widget on a form in a scrolled
window) to allow this functionality.

To use the Command Palette as an editing tool the user simply double clicks the mouse on a name
in any of the lists or uses the mouse to slide down the popup menu and release the mouse over a
selection. In either case, the selection is pasted into the AutoVal edit window.

Syntax using pre-defined switches in a command file always begins with the set or furn command.
A convenient feature of the Command Palette automatically places either word at the beginning of
a switch selection for the user. As set is the most frequent option, the initial Command Palette
uses set as the default. The switch mode is displayed and can be changed in two locations. A
main menu option, “Switch Mode”, provides the set and turn options in a radio box format. A
push-button near the switch list title indicates the current setting. The user can toggle between
the two options in the menu or use the push-button to make the change. When the push-button is
pressed with the mouse, its label displays the other selection.

When the user invokes a popup menu for a display item, a “help” selection is included. Help for
each item displays brief textual help to the user. The help information consists of text comments
contained within the definition of the macro, symbol, or switch that describe the syntax and/or use
of the particular item. The help for AutoVal commands provides more detailed information on
their use.

Learn Mode

One recent addition to the AutoVal testing environment has been termed "Learn Mode" by
WL/AAAF. Learn Mode takes the concept of automated testing to the next level -- automatic
generation of AutoVal commands for OFP test procedures. When the system operates in Learn
Mode, user actions are monitored and AutoVal commands duplicating these "test procedures” are
generated. Test engineers can generate command files while performing day to day, familiar
activities on the system, thus reducing the time to create a particular command file. The user
doesn't have to remember AutoVal command syntax, macro names, or switch descriptions to
duplicate their inputs.

In the current Learn Mode implementation, monitoring activities are performed by two,
independent monitoring processes. Translation activities and Learn Mode state control functions
are performed by a separate process (task) incorporated into the AutoVal main executable. The
monitors, which are separate executables, communicate with the translator via shared memory. In
this manner, the user can move and reconfigure the monitors as quickly and easily as other
simulation software components. This allows the user to rearrange the simulation system if more
processing time is required to monitor or translate data on a specific test station.

Learn Mode monitors three types of shared memory inputs: 1) Switches, 2) Aircraft Control, and

3) Simulation Control. Switches include such items as cockpit panel toggle switches, push
buttons, and rotary knob settings. Learn Mode uses the AutoVal switch definitions to identify
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shared memory locations for monitoring. Aircraft Control refers to autopilot inputs of altitude,
roll, pitch, heading, etc. In the AutoVal and Learn Mode environments, aircraft control functions
(e.g., pitch, roll, heading) are performed by using the autopilot panel and the real-time autopilot
model. During Learn Mode, the user interacts with the normal simulation input devices and the
aircraft autopilot to perform test procedures and validate results. Simulation Control refers to
other user inputs to the simulation that are controllable via shared memory (e.g., test station
configuration and startup). Learn Mode allows the user to identify these additional shared
memory locations for monitoring.

When the user enters Learn Mode, the translator processes all switches currently defined in
AuntoVal. By default, the first write location and value encountered for each switch position are
used as monitoring keys to determine data changes during Learn Mode. The AutoVal switch
syntax was enhanced to permit the user to identify a “key” location and a mask value for a switch.
If a key location is specified, Learn Mode scans the switch definition and associates each position
with a unique value. This permits an AutoVal system engineer to insert simple switch keys for
definitions which may be complicated or unusual. The mask value is applied if only part of the
location is to be monitored and checked during translation. This feature enables the simulation
designer to group more than one switch into a single shared memory location.

After extracting any pertinent information, the Learn Mode translator constructs a translation
table to be used when recording. The table is indexed using the shared memory location and
value setting for each valid switch position. For any valid location and value, the corresponding
AutoVal switch command is stored and retrieved at the appropriate time during processing. User
monitored actions, not corresponding to translation table entries, are duplicated by generating a
corresponding AutoVal wrife command.

In addition to monitoring user defined switches, Learn Mode provides the user with a mechanism
for identifying additional shared memory locations to monitor. The Learn Mode Selection Tool
(refer to Figure 3) was specifically designed to give the user this capability. The Selection Tool
allows the user to create, open, edit, and save groups of symbols for use during Learn Mode.

The symbol names are symbolic representations of shared memory locations within AutoVal. The
selection tool has a main menu and an area for adding, deleting, or editing a list of symbol names.
When the user has finished with modifications to the symbols, the whole list can be saved to a disk
file or “save set”. These save sets can be opened, modified, or renamed as needed.

For each symbol item in the saveset, the user can choose one of three options: Synchronous (real-
time), Asynchronous(non-real-time), or Off. (The Off option signifies that the indicated symbol,
though in the list, should not be monitored at all.) These three options are presented opposite
each symbol name in a radio box for clarity of display and ease in modification. The Selection
Tool provides consolidated display and editing capabilities for all extraneous Learn Mode

monitoring locations.
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Since simulation input device rates are usually different from one test station to another, Learn
Mode needed to provide a real-time monitoring capability flexible enough to operate under such
circumstances. To insure that user inputs are captured synchronously and quickly enough to
preclude any data loss, Learn Mode utilizes a real-time simulation model to perform the majority
of the monitoring activities. This real-time model conforms to specifications for Advanced Multi-
Purpose Support Environment (AMPSE) and Virtual Test Station(VTS) components and is
scheduled by the Distributed Ada Real-Time Executive (DARTE). As a model, monitoring
activities are automatically synchronized with other simulation input and outputs. The frame rate
of the monitor can be easily adjusted (via DARTE) to match the frame rate of the fastest input
device to ensure that all user actions are captured.

During the design phase, it was noted that, in the AMPSE and VTS architectures, DARTE is not
always active for all phases of test stand activity. This indicated a need for monitoring capabilities
outside the real-time DARTE realm. A non-real-time monitor was incorporated into the design.
To promote reuse and ensure that all monitoring activities and structures where consistent, both
real and non-real-time monitors were designed to use the same Ada packages to perform input,
computational, and output logic. Separate mainline logic for each monitor incorporates any
differences required for each monitor type. The user can indicate specific data locations and
switches to be monitored in a non-real-time mode. The non-real-time monitor is accessible during
the entire Learn mode session while the real-time monitor is only active when DARTE and other
simulation models can run. The non-real-time monitor is very useful for momtormg simulation
setup and control functions.

Once the user has specified the valid locations to monitor and has entered the Learn Mode

environment, the translator begins to communicate a variety of initialization information to each
monitor including the number and actual shared memory locations that each process is responsible
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for. The translator is responsible for distinguishing real-time vs. non-real-time data, partitioning
the required data locations among the appropriate monitors, and creating the non-real-time
monitor if needed.

Once this initialization phase is complete, the monitors begin scanning the system for user activity.
When system values are updated, the appropriate monitoring process will identify the change and
record the pertinent data. The translator and monitor processes use sections of shared memory as
data buffers to pass this “change data” and error messages. The monitors write data and error
indicators to the end of these circular buffers while the translator processes infermation from the
beginning of the buffers. The monitors only deposit data into these circular buffers when an
actual data change is detected, thus reducing message time and traffic. If processing is not
sufficient to monitor all of the data in the required frame rate, the monitors indicate this error
condition to the user via DARTE or the simulation display console. If high processing demands
on the translator result in a backlog of data resulting in an overflow of the shared memory buffers,

the user is notified that data has been lost.

When the translator receives change buffer data, it accesses the previously constructed switch
translation table to identify the appropriate AutoVal command. As mentioned above, if no
corresponding entry is found, an AutoVal write command is constructed to duplicate the activity.
The translator then inserts the generated command into the edit window on the AutoVal main

screen.

In addition to performing normal simulation activities in Learn Mode, the user may also
interactively enter AutoVal commands at a command line prompt. This interactive capability
enables the user to not only run macros, command files, and native AutoVal commands, but also
to insert these commands into the edit window. Interactively, comments describing the test
procedures, detailing problems, or highlighting edits can be inserted as well. Many of the features
available during AutoVal Interactive Mode, such as syntax checking of commands, are applied
before an interactive command is actually executed and placed in the edit window. This feature
allows the user to switch between manually interacting with input devices (e.g., switch panels)
and controlling them remotely by interactively entering commands and macros.

Upon exiting Learn Mode, the user may exercise any of AutoVal’s editing or file management
capabilities to manipulate, save, or empty the file. This capability allows the user to create small
macros or large command files using Learn Mode. The user can also choose to insert new
commands or procedures into a previously existing command file.

Summary

The AutoVal environment provides a flexible, tailorable approach to simulation software testing.
Furthermore, recent user interface enhancements have focused on proving an integrated, easy to
use interface to the AutoVal test environment. The AutoVal Command Palette is specifically
targeted towards increasing efficiency when generating command files. Learn Mode takes an
additional step in speeding up command file generation by automatically replicating a user’s test
station actions into a command file. These new features, when combined with the existing
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capability and flexibility of the AutoVal software, provide a powerful testing tool which can solve
a variety of software testing needs.
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ABSTRACT

Testing is one of the most critical and difficult activities during software development
and maintenance. Nevertheless, only limited progress has been made in developing a
theoretical basis for testing software. Proving that software will execute correctly for all
possible inputs has been shown to be infeasible or prohibitively expensive for most
applications.  Ongoing University research in Program Checkers promises a dramatic
breakthrough towards increasing the effectiveness of software testing by proving that a
program produces a correct output for a particular input. However, until recently Program
Checkers had been applied to only a limited class of non-realtime problems. A challenge
was to see if this technique could be used in a significant way for testing real-time avionics
applications. This paper reports on the efforts ongoing at Hughes in collaboration with
Dr. Manuel Blum from the University of California at Berkeley, and the progress that has

been made in developing and using Program Checkers for real-time radar software.

INTRODUCTION

Residual errors in mission-critical avionic software that result in faults or failures while
the software is executing in the operational environment has been a continuing problem for
the Air Force for which solutions have not been forthcoming. It has been shown that it is
prohibitively expensive and may not even be feasible to test complex, mission-critical
software to a very high degree of reliability [1], [2]. Program proving (i.e., proving that a
program will produce correct outputs for all inputs) is even further from the state-of-the-

Copyright © 1995 by Hughes Aircraft Company
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practice than exhaustive testing. Techniques commonly employed for life:»crimical systems
with very high reliability and availability requirements such as employing redundant
software and hardware to vote on the correct solution is also not considered a viable
alternative for mission-critical systems because of the multiplicative increase in system cost.

As a method of significantly increasing the reliability of mission-critical avionic
software without prohibitive increases in system cost, we consider a paradigm shift that
changes the problem to be solved. Rather than proving a program operates correctly on all
inputs, we instead prove that it operates correctly on a particular input. Then, rather than
merely testing the software for some limited duration through which we try to convince
ourselves it will always operate correctly, we employ a Program Checker that executes
every time the program runs to verify its correct operation on the tly, both before and after
it has been fielded. Under the new paradigm, we will, of course, continue to test software
to some reasonable expectation of correctness, but there will also be the safeguard that
faults will be detected in the event the sofiware does not execute correctly for some input
condition.

A Program Checker is an algorithm statistically independent from the software being
checked that, given an input/output pair, decides if that input/output pair is correct. A
complete Checker can increase the reliability of software by a multiplicative factor over
conventional testing methods. Checkers can vary considerably in the amount of resources
they consume and their probability of detecting any faults that occur. A range of Checker
approaches are possible with varying costs and benefits. There are also a number of
difficulties in applying Checkers in real-time avionics that must be overcome.

Program Checkers are intended to be permanently embedded in the software they
check. They continue to check program results even while the software is operating 1n it's
normal environment and could potentially be used as triggers for Smart Instrumentation

(i.e., instrumentation that is triggered only when an anomalous event occurs). However,
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if Checkers are embedded in operational flight programs, their impact on logistics and
software maintenance must be considered.

The remainder of this paper discusses the background of the radar software testing
problem, the theoretical basis of Checkers, and lessons learned from a limited experiment
to transition Program Checker technology to working software engineers who are applying

the technique on an actual radar operational flight program (OFP).

BACKGROUND

A substantial portion of the radar software life cycle cost is directly attributable to the
effort required to test for and resolve errors in the most complex and mission critical
components of the OFP. Testing of radar software goes through progressively more
complex testing environments, starting with unit test performed in non-realtime on COTS
platforms, proceeding to software and system integration facilities where testing is
performed in real-time with actual embedded computers, and ending with flight test.
These test environments provide increasingly more realistic scenarios in which to exercise
the system. However, in progressing to more realistic test environments that are more
likely to stress software and cause it to fail, it becomes increasingly more difficult to obtain
the data needed to analyze and resolve performance problems. Program Checkers that are
available in all the test and operational environments provide a method for signaling that a
software fault has occurred and collecting just that data needed to resolve the error that
caused the fault. Checkers may even be able to detect faults before they cause a system
failure. Without a Checker, such a fault may not be detected every time it occurs, but be
obscured until later when a system tailure occurs, at which time the data needed to identify

where in the software the fault occurred may no longer be available. Indeed, such a system

failure may not occur until after the system has been deployed in the operational

environment, at which time no internal software data is usually available.
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In 1993 under Independent Rescarch and Development, we began gathering
information from software problem reports submitted to Hughes program offices to
determine the software functions where test improvements are needed. The problem
reports from a single radar tape upgrade delivery were mapped to software components and
units to identify characteristics of the requirements, design, and/or code that led to
undetected errors and reduced reliability of the system. The scope of reports extended from
the time the software was delivered to the avionics integrator through flight test of the
system. On the basis- of that survey, we found that many residual problems remaining in
the software after delivery result in externally detectable faults or failures only when a
particular combination of events (for example, an unusual ownship and target geometry)
occurs in the operational environment. Such problems are very difficult or impossible to
detect with the scenario generation capability of the ground based radar integration
laboratory. They are also unlikely to be detected during  validation test using the current
methodology because the anomalous behavior they cause is not always externally
observable. As a result, we identified the need for a mechanism to detect software faults

every tme the faults occur even though anomalies are not always externally observable.

The Program Checker paradigm developed by Dr. Blum at the University of California
at Berkeley shows promise of providing such 2 mechanism. As a result, in 1994, Hughes
and the University of California (UC) jointly funded a project under UC’s Micr@élecz;ronics
Innovation and Research Opportunities (MICRO) Program to see how this technology
might be applied to computational problems that are important in real-time radar
applications. ~ Although jointly funded by industry and UC, effort under the MICRO

Program is performed entirely by the University.

PROGRAM CHECKERS

The idea for a simple checker is derived from noticing that for some computations,
the time required for the computation is an order of magnitude or more greater than the time
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to calculate whether the result of the computation is correct. For example, in [3] the
problem of computing a non-trivial divisor, d of a large integer, ¢ is considered. It is
much faster given (c,d) to determine if d is a divisor of ¢ than to find d when one is merely
given c. In [4], the definition of a simple checker is given as:

Let f be a function with smallest computation time T{(n). Then a simple checker for
f is an algorithm (generally randomized) with the following input/output specification.

° Input: I/O pair (x,y),

° Correct output: If y=f{x), ACCEPT; otherwise REJECT.

e Reliability: For all (x,y), on input (x,y) the checker must return correct output

with probability (over internal randomization) 2 p_ for p_ a constant close to 1.

o “Little-o rule”: The checker is limited to time o(T(n))

Of particular interest to avionics, in [3] a Checker that resulted from the MICRO
Program effort is presented for a Fourier Transform performed on the domain of fixed
point fractions. Examples of simple checkers for other non-trivial numerical problems are

also given in [5].

Unfortunately, there is at present ﬁo general theory on how to derive simple checkers
for arbitrary computational problems. Moreover, although Checkers are required to take
less time than the computation they are checking, if Checkers were used for every
computation in a complex application like radar, the computational resources consumed
would be unacceptably large.  As a result, less computationally-intensive alternatives,
although they might yield less benefits, are desired for real-time, embedded avionics. The
challenge given to the University under the MICRO Program was two fold:

1. To extend the Checker paradigm to new classes of problems such as the Fourier

Transform on fixed point fractions;
2. To identify techniques for checking computations that would be effective, yet have

an acceptably low computational and memory overhead.




APPLYING CHECKERS TO A RADAR OFP

In response to the second challenge, also in [3], variations on the Checker paradigm are
introduced Among these is the idea of a Partial Checker. A Partial Checker does not
completely verify that an answer is correct; rather it checks only that some aspect of an
answer is correct. During 1994, two teams of radar software engineers began an effort to
see if the Program Checker paradigm, including less computationally intensive variations,
can be applied to an actual radar OFP.  The teams are working on two modes being
incorporated into an update tape for an airborne radar:  an air-to-ground Doppler Beam
Sharpening [DBS] mode and a classified air-to-air mode. To determine the efficacy of the
Checker paradigm for radar, the intent of the experiment is to embed Checkers into the OFP
updates and record under what circumstances and how often the Checkers fire. Although
the results of this experiments are as yet incomplete, we can report on some of the
Checkers that have been incorporated and some that were considered, but proved to be too
costly. The ongoing experiment is also limited by the fact that the radar mode efforts are
not new developments, but are modifications of existing modes to add new features. Asa
result, a ground rule of the experiment is that Checkers are not added to code that is not
otherwise being modified. .

The following are examples of Partial Checkers that are being embedded in the OFP.

o Checksum of reordered averages with the unordered averages in signal processing

code for zero range delay calibration.

127 127
Zs(@rdered averagesSwni) = Zs(unordex‘ed AVerageSsubj)
j=0 j=0

o Verify PRF stepping within the array does not deviate by more than specified

amount in DBS data processing code for very high range and azimuth resolution
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. |MAPRF(n) - MAPRF(n - 1)

1 - € < < 1 + € where n is the process sync index
MAPRF(n)

s Verify the scaling factor does not exceed the limits, also in the DBS data processing
code for very high range and azimuth resolution

- MAXSF,, < Sf,,.< MAXSF

cde

The following is an example of a Checker that was considered, but is not being used

because of timing constraints.

* A check for loss of significance in the signal processing code for zero range delay

calibration.
1 16 1 16 1
— ZRaW Datasu X (—) = ZRaw Datasub; X (——)
2 j=0 8 j=0 16

CHECKER RECORDING

It is not enough to simply embed Checkers in the software. Some mechanism must be

available for reporting when Checkers declare an error so that the error detection 18

externally detectable. The two teams of software engineers who developed the example
Checkers described here defined a library routine that is called whenever a Checker

declares an error. Information about the event is passed to the library routine through the

.calling sequence. The event information includes:

e Event ID (a unique error code number)

e TaskID

e Up to four words of data (expected values and measured values)

e Wall clock time

A circular buffer in memory is used as a temporary recording method. During flight

test, information in the buffer will be permanently recorded on the instrumentation tape.
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During integration test, the system can be halted whenever a Checker declares an error
event.

Although at the present time there are no plans to make use of Checker events in the
OFP after it is fielded, we have considered the feasibility of using the Built-in-Test matrix
that is used to capture hardware faults for recording Checker-detected error events.
However, the cost and logistics impact of that approach would have to be carefully
considered. For the present, it is planned that, although Checkers might continue to
execute in delivered systems, their firing would not be recorded or be in any way visible to

the user during normal operation of the system.

FUTURE WORK

The experiment to embed Checkers in a radar OFP has not been completed. As the
software with its embedded Checkers proceeds through testing and validation, we intend to
collect statistics on whether and how often the embedded Checkers detect an error
condition. We will also measure whether any Checkers declare an error when the software
is in fact correct and will collect qualitative information about how well the Checkers aid
the software problem detection and correction process. Finally, in addition to completing
this limited experiment to demonstrate the value of Checkers, under the continuing MICRO
Program, the University will investigate Checkers for algorithms such as the Kalman filter,

PRF selection, and automatic target recognition.

CONCLUSION

Based on the limited results so far in extending Program Checking theory to algorithms
used in real-time radar applications, we believe that this technology will prove useful in
detecting difficult-to-find errors in complex avionics software that have proved resistant to

current testing methods. We are excited by the prospect of the benefits that will be derived
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from embedding partial Checkers in radar OFPs and collecting just-in-time information

during integration and flight test whenever those Checkers detect an error event.
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Abstract

Automated Software Regression Testing is a means of reducing defects in
operational flight program (OFP) software entering flight test by speedily
detecting induced defects during system integration/flight qualification
testing. This test method, in turn, allows test personnel to focus more time
on finding new defects before flight test. The goals of this paper are to:

e Place automated software regression testing in the context of OFP
software defects reduction.

o Describe options for implementing automated software regression test
systems and the impact of these options on test facility design.

e Present the current status of plans on the F-15 APG-70 Process
Improvement for Verification Testing (F-15 APG-70 PIVT) program1 to
install an automated software regression test capability on a
manual-based testing facility.

o Describe how the F-15 APG-70 PIVT program will reduce defects in OFP
software entering flight test by detecting defects early in the software
development process.

e Recommend design considerations for builders of new test facilities.

Defects

The task of developing new software, as well as the task of
modifying existing software, often injects defects into the software. This is
particularly true of operational flight software, which operates in real-time
among several processors. The reduction of the number of defects, as well

' The F-15 PIVT program is an on-going study sponsored by Warner-Robins Air

Logistics Center F-15 Engineering.

Copyright © 1995 by Hughes Aircraft Company
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as the minimization of the negative consequences of defects, is a significant
part of an ongoing effort to continually improve the software development
process. An examination of types of defects, and their impact on software
development, follows.

Software defects can be categorized in either of two major classes:
(1) new defects, which are related to the performance of new software
and (2) induced defects, which cause existing software to behave
incorrectly.

When new software is introduced, either as a new product or as a
new portion of existing software, its purpose is to provide new capability
or funcijonality to the software product. A new defect is an entity that
causes the mew software to be unable to correctly provide that additional
capability or functionality.

The modification of existing software, as well as the introduction of
new software, can cause induced defects. The existing software has
previously passed some incremental testing, minimally at the Computer
Software Unit (CSU) level, and possibly the Computer Software Component
(CSC) level, or beyond.

The software development process is composed of the following nine
steps:

1. requirements definition/analysis

2. design

3. code
4, CSU integration
5. CSC integration
6. Computer Software Configuration Item (CSCI) integration
7. system integration
8. flight qualification test
9. flight test
Although defects are introduced primarily during the first three steps or
phases of the software development process, opportunities to detect
induced defects occur in every phase of the process. The two phases
where defects have the potential to dominate software development cost
are defects in requirements definition/analysis and defects passed from
system integration/flight qualification testing to flight test.

If a defect is made in requirements definition/analysis, the software
effort may be headed down the wrong path, potentially wasting
considerable effort. This class of defects is out of the scope of automated
software regression testing.

If a defect is passed from system integration/flight qualification
testing to flight test, the cost of detecting and analyzing the defect in flight
test is very expensive because of the cost of using instrumented aircraft,
flight testbeds, and a test range with data acquisition and data reduction
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equipment. In addition, achievable radar defect analysis productivity is
reduced by limited test access. Limited test access increases the
dependence on highly experienced personnel. Usually tiger teams of the
best and brightest (expensive) government and contractor talent are
needed to fix problems at this stage. The cost of these experts is a
significant portion of the cost of correcting defects found in flight test, not
to mention the additional pressures of schedule, customer demands, etc.

Testing Methods and Tools
Current testing methods tend to be manual-based (i.e. non-automatic,

labor-intensive) processes, especially for older systems like the APG-63 or
the APG-70. An effective manual-based process has the following
characteristics: repeatability, optimal number of steps, valid testing, and
repeatable results. However, there are several problems with this process:

e Availability of test resources
Because of downsizing in the Department of Defense, fewer government
and contractor facilities are available resulting in a reduction in the
number of hours that test beds are available for software testing. In
addition, a combination of defense downsizing and the reduced numbers
of appropriate personnel now entering the job market as a result of the
baby buster generation, fewer workers are available in the youngest
working classes to support test facilities.

o Skill level required for test personnel
Because of the currently perceived lack of a long-term career in
aerospace/defense-related businesses, highly skilled personnel may not
be available to perform complex test facility tasks. The school systems
are not capable of producing personnel with an adequate
skill/knowledge level.

o Test validity
A manual-based process relies heavily on the skill, knowledge, and
proficiency of test personnel. Since these qualities vary from individual
to individual, detailed procedures followed, interpretation of displays,
and interpretation of results are subject to variation. This variation has
a potential impact on the validity of tests.

e Test facility accessibility
Labor-intensive testing generally requires significantly more set-up and
operation time than automated testing, increasing the amount of time
required to perform a given amount of testing. This increases the
demand on test facilities, and reduces accessibility of test resources for
others. '
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Test Facility Development Process

Sensor system test facilities are usually developed during each
system Engineering and Manufacturing Development (E&MD) program, and
the test facilities go into maintenance along with the semsor system. Major
innovations in test facility design usually occur when the next E&MD phase
occurs, when the government issues a technology contract to improve
certain aspects of test facility functionality, or when sensor system
maintenance transitions to an Air Logistics Center. Generally, there is no
pre-planned product improvement program for the test facility as there is
for the semsor system hardware configuration items or the sensor system
software configuration items.

Historical Perspective

Most older test facilities started with manuval-based test systems.
Test facilities seem to have evolved in roughly the following manner:

o The first test facilities were based on hardware-based monitor panels
and oscilloscopes, with a host computer to load the OFP into the sensor
system under test, and stripcharts and analog instrumentation tapes to
record results. Commercial off-the-shelf (COTS) computing systems
were used as software development platforms but were not available to
perform real-time functions.

o Later, logic analyzers with stand-alone capabilities (front panel control
only) were developed and adopted. Standardized logic analyzers and
instruments (IEEE 488 and VXI) with some computer control followed,
but storage capacities were relatively limited. Instruments adopted disk
operating system (DOS) personal computer (PC) hosts and command line
interpreter interfaces. Command line interpreter interfaces were used
for stimulus and data acquisition systems as well, with a wide variety of
operating systems.

o Eventually, storage capacity increased and digital tape was introduced
for instrumentation recording. Instruments adopted standard
configurations, such as UNIX®-based platforms and Microsoft®
DOS/Microsoft Windows™ platforms as hosts.  Stimulus and data
acquisition systems started standardizing om platforms such as UNIX,
VXWorks®, and Microsoft Windows. Graphical user interfaces (GUIs)
gained acceptance as well.

Newer test facilities have generally taken advantage of technology
improvements. Older test facilities are usually a mixture of the equipment
developed during the three phases of test facility development described
above. Funding restrictions, cost/benefit concerns, test facility revalidation
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concerns, test facility developer paradigms, test facility owner paradigms,
and test facility user paradigms have all contributed to the lack of
technology investment in existing test facilities.

As stated earlier, the cost of fixing defects detected by testing is
greatest for defects passed from system integration/flight qualification
testing to flight test. Because automated software regression testing will
detect induced defects earlier in the software development process, test
personnel will be able to spend considerably more time on finding and
debugging new defects.

In designing an automated test system to replace a manual test
system, repeatability, optimizing the number of steps, test validity, and
repeatable results are critical to success. The degree of automation for
system-level testing depends on the anticipated return on investment. For
this return on investment to be significant, the task or process to be
automated must be repetitive and prone to human error (complex or long),
and the software to be tested must have a high expectation of being
retested, either by being a part of a software entity on a long term
upgrade or maintenance path, or through reuse. In addition to these
considerations, some manual control capability must always be retained in
a test facility design to handle investigation and debugging tasks when a
defect is found. There are several factors to consider in determining the
degree to which testing should be automated. A description of the key
elements in a test facility follows, which create a basis for the
implementation of automated testing by the F-15 APG-70 PIVT program:

e Control (for both the tester facility and the sensor system controls)

¢ Manually controlled (hardware switches)

Several human factor problems emerge as the number of switches
increases. Eventually, test personnel cannot reach all the switches
from a single, convenient location and cannot toggle them effectively
in real time.

The decision to use actual sensor system controls instead of
simulated controls must be driven by testing requirements,
particularly when the sensor system controls (actuated by the
operator on the deployed system) are part of another avionics
system, such as the central/mission computer or the displays. The
choice depends on whether the purpose of the test is weapon system
integration or sensor system integration. For weapon system
integration, actual controls should be used. Simulated controls could
be used (because real controls are not available or too costly), but
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then a judgment must be made on whether the weapons system
software is being properly tested by the regression test (the real
goal) or the simulators are being tested (a test of questionable value).

If the nature of the test is to support semsor system integration,
simulated conirols can be used, or the data bases and variables
affected by the controls affect can be manipulated directly.

Computer controlled with a command line interpreter user interface

This approach requires test personnel to learn and remember the
command language and syntax, a requirement that may become
unreasonable as test facility complexity increases. For example, in a
simplified radar test facility, the test facility subsystems include at
least an avionics simulation, which includes navigation, a mission or
central computer, and display simulations; a radar target stimulus
simulation; and a radar processor test equipment function to load,
dump, and control the radar processors.

Computer controlled with a command line interpreter interface and
scripting capabilities

Scripting is very beneficial for test personnel because command
files with embedded scripts can be wused for repetitive tasks.
However, command languages and syntaxes must be well understood
to build new test cases.

Computer controlled with a GUI

This approach frees test personnel from needing to know a
command language and syntax. The system is still manual in the
sense that test personnel must manually use the GUI to perform the
test steps for each test case, unless a method of recording and storing
mouse positioms, mouse clicks, and keyboard inputs is
accommodated.

Computer controlled with a GUI and scripting capabilities

A scripting capability and a script editor for a GUI enable test
personnel to edit a tesi case easily. The preferred implementation is
to layer a GUI on top of an existing command line interpreter user
interface and use the command line interpreter commands and
syntax for scripts. Experienced users of the command line
interpreter interface do not need to relearn a new command
language to interpret the scripts.

Some emerging COTS scripting systems may minimize the cost of
developing a scripting system tailored for a particular facility.
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Simulation
¢ Off-line, non-real-time simulation of sensor system inputs and

simulated real-time inputs to an emulation of the system under test

This approach is appropriate for software integration and system
integration testing, especially when there is little or no feedback
from sensor or software outputs to sensor inputs and little risk of
timeline overrun.

Off-line, non-real-time simulation of sensor system inputs and
real-time inputs to the system under test

This approach is appropriate for software integration and system
integration testing, especially when there is little or no feedback
from sensor or software outputs to sensor inputs, but there is some
risk of timeline overrun.

Off-line, non-real-time simulation of sensor system inputs and
simulated real-time inputs and responses to an emulated system
under test

This approach is appropriate for software integration and system
integration testing, especially when there is feedback from sensor or
software outputs to sensor inputs and some risk of timeline overrun.

On-line, real-time simulation of the inputs and real-time interaction
with the outputs of the sensor system under test

This approach is appropriate for software integration and system
integration testing, especially when there is feedback from sensor or
software outputs to sensor inputs, but there is great risk of timeline
overrun. Because these simulations are truly real time, these
simulations are the most difficult to implement.

Data Acquisition
¢ Manual and visual acquisition of sensor system and test facility

(simulation) data through the use of terminals, monitor panels, or
test equipment displays

These methods of data acquisition are subjective and very
inaccurate. A flash on a display may escape a tester if he is looking
somewhere else to perform a test equipment or sensor system
control function.  Additionally, it may not be possible for test
personnel to determine the exact position of a symbol on a display.
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¢ Computer-based acquisition of sensor system and test facility
(simulation) data

Alphanumeric data (representing simulation parameters or sensor
system variables) is easily handled by a computer-based data
acquisition system. Display data is usually more difficult. Often, the
sensor system does not actually control the display bit map and
raster systems. Instead, it sends semsor data to a central computer
or mission computer to be formatted for display. One method is to
capture and compare pixel data with a known expected symbol
pixel-by-pixel to determine whether the test passed.  The other
method is to capture and compare underlying sensor system
variables and data bases with expected values before the data is
converted and formatted for the display device, central computer, or
mission computer.

The choice between these two display testing designs is driven by
considerations similar to those discussed for the control optioms. A
decision must be made about whether the nature of the test is to
support weapon system integration or semsor system integration. If
the nature of the test is to support weapon system integration, pixel-
by-pixel comparison may be appropriate. However, if the
central/mission computer or display device must be simulated, a
judgment must be made on whether the weapons system software is
being tested or the simulators are being tested.

If the nature of the test is to support sensor system integration, it
is preferable to compare underlying sensor system variables and
data bases with expected values because central/mission computer
and display OFPs typically are developed in parallel with sensor
OFPs. Updated non-sensor OFPs are usually not available during
sensor OFP integration.

o Data Reduction (usually applies only to instrumentation data tapes)
o Manual setup by the operator as soon as instrumentation tape is

available '
o Automatic pre-defined reduction as soon as instrumentation tape is

available

The purpose of a data reduction function is to handle flight
instrumentation data tapes, aid validation of flight instrumentation
software before flight test, and reduce test facility instrumentation
tapes in cases where the bandwidth of the instrumentation data is
too high to be handled by available computing systems. To support
flight instrumentation data tapes, some capability to handle manual
setup by an operator will be required. Automatic pre-defined
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reduction may not be cost-effective unless the test facility has a
multiple-shift operation.

o Data Analysis
¢ Manually set up or interactively used as soon as instrumentation and
facility test (simulation and lab instrument) data is available
¢ Automatic pre-defined analysis
¢ Automatic declaration of pass/fail as soon as data analysis is
available
Some manual capability must be preserved to support
investigative and debugging tasks when defects are found.
Automatic pre-defined analysis and declaration of pass/fail
represents a large software investment and is appropriate for
mature sensor systems in which system behavior is well
characterized; that is, a fairly large amount of software is reused
from one OFP build to the next.

o Test Case Management

¢ Manual

¢ Computer data base repository of test cases, test case coverage, and
test case results

¢ Computer data base repository of test cases, test case coverage, and
test case results in which test case results are inputs from the data
acquisition system and the data analysis system

This approach also represents a large software investment and

again is appropriate for mature sensor systems in which system
behavior is well characterized. COTS data base management tools
reduce the development cost of these systems, but the main cost is
expended in maintaining the data bases.

The Warner-Robins Air Logistics Center Software Development
Facility (WRSDF) program will culminate in the delivery of a manual-based
testing facility to support the F-15 APG-70 OFP. Concerns about using a
manual testing process for maintaining a complex OFP led to an
Air Force-sponsored study and development effort called the F-15 Process
Improvement for Verification Testing (F-15 PIVT) program to consider an
automated OFP regression testing process for the F-15 APG-70 radar.

The WRSDF is composed of four configuration items: the Central
Development Facility (CDF), the APG-70 Radar Test Bench System




(70RTBS), the Advanced Software Bench (ASB), and the Instrumentation
Data Reduction & Analysis System (IDRAS). Figure 1 illustrates the
support systems and their associated functions. The CDF consists of a
mainframe computer with terminals that hosts the OFP software
engineering environment. The ASB and 70RTBS are GUI-controlled radar
test stations. The IDRAS has a mixture of command-line-interpreter-
controlled and GUI-controlled functions. The IDRAS contains flight
instrumentation data recorders that are shared by the ASB and 70RTBS.
The facility has no automated software regression testing capabilities
resident in the original design.

APG-TO SOF

CENTRAL DEVELOPMENT
FACILITY (CDF)

Reguirements | © Design Taols
—{T o Configuration Managsmaent
o Documentation Tools

ADVANCED SOFTWARE
BENCH (ASB) AND APG-70 Reloa sad
RADAR TEST BENCH eggse

@ SYSTEM (70RTBS) e

o Test & Integration of OFP
o Full Radar System Test with

INSTRUMENTATION DATA Eg'bggmp’emem of Radar

REDUCTION& ANALYSIS
SYSTEM (IDRAS)
o Flight Taps Media
Conversion
o Instrumentation Data
Analysis

Figure 1. WR-ALC APG-70 Software Development Facility (WRSDF)

The goal for the F-15 APG-70 PIVT program is to maximize effective
utilization of the WRSDF. Effective utilization of the WRSDF is critical to
successful organic capability for WR-ALC in F-15 APG-70 software
maintenance, which will transition from Hughes Aircraft Company to
WR-ALC circa 1996. Effective utilization drove three design requirements:

o Reduce the requirement for highly trained specialists
o Reduce OFP Block Cycle release time and increase test content
o Reduce flight test hours and eliminate defects that get into flight test
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The most significant element of software development in terms of
cost, time, and process is test. More productive testing means more
productive OFP development. Thus, the PIVT program has focused on
improving testing productivity through a structured test approach
(complete test coverage, minimum duplication, test planning/scheduling
enablers) and test automation (i.e., automated software testing) to reduce
variability caused by operator error. Faster test times, which allow more
tests to be performed more frequently, are thought to be an added benefit.

Further analysis was made on the structure of the current manual
method of performing regression testing on APG-70 radar OFP software.
This method of testing concentrates on system-level regression testing.
CSU-, CSC-, and CSClI-level regression testing tends to vary with the
experience and knowledge of the test personnel. Test coverage was found
to be complete, with little duplication. Automating the current manual
system-level regression test was accepted as the baseline for automated
software regression testing.

Since system integration testing is performed on the WRSDF 70RTBS
and ASB and since only the WRSDF 70RTBS and ASB are designed with
GUI-controlled capabilities, the PIVT program concentrated on automating
the process of performing a test (stimulating the radar system and
observing behavior) on the 70RTBS and the ASB rather than on using the
IDRAS for initial automated software regression test prototyping. These
WRSDF GUIs will serve as the basic source of control for the APG-70
PIVT-enhanced system. The primitive scripting capability of these GUIs
will require improvements to control all 70RTBS and ASB functions
through scripts.  Script editors for the GUI scripts will need to be
developed. The GUIs will require changes to accommodate simulated radar
controls, which cannot be controlled effectively with the GUIs.

The WRSDF simulation systems require no changes other than the
radar control simulations since the simulation systems were designed to be
real-time interactive with the radar system inputs and outputs. The data
acquisition systems will require major changes since the systems were
designed to be used with an interactive user. Data is logged on several
federated systems, but the data is not collected and correlated.

Current program status is that major design decisions are still
required. A decision to determine the method of evaluating display data
(between pixel-based comparisons and evaluating underlying variables
and data bases) has not been made. Test data routing and data archiving
evaluations are occurring. Also in progress is the determination of
whether pass/fail decisions should be made in real time.
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Recommendations and Observations

As the OFP software is modified or enhanced, regression testing of the
OFP is needed. Regression testing of the OFP software must be utilized
several times over the life of the software to make a commitment to
build automated software regression systems.

Test facility software providing automated test capability should be
designed to support various OFP versions. Maximization of automated
test software reuse is important to maximization of the return on
investment of implementing automated test.

Test facilities require manual-based control capabilities to handle
investigative and debugging tasks when defects are found. Upon the
discovery of a defect, the test personnel should have the capability of
interrupting the automated operation, utilizing test tools interactively to
determine the nature of the defect.

Test facility controls should be GUI-based with a scripting capability
and a scripting editor. This allows the automated test facility to invoke
test functions on a level of control similar to the level of control offered
to manual test personnel.

Sensor system controls may be either actual or simulated depending on
whether the test is at the weapon system level or the semsor system
level. The breadth of testing dictates the dependence on actual sensor
system controls.

Simulations and stimulus of the semsor system OFP may be in real time
depending on the amount of feedback from sensor output 10 sensor
input and the degree of timeline overrun risk.

Evaluation of sensor system display information may be either
pixel-based or sensor-system-data-based depending on whether the
test is at the weapon system level or the sensor system level.

Commit should be made for pre-planned product improvement
programs for test facilities to ensure long-term support for weapon
system development. As weapon systems change and grow, test
facilities can not remain constant and be expected to provide consistant
levels of support.

Glossary
ASB. Advanced Software Bench.
CDF. Central Development Facility.

COTS. Commercial off-the-shelf.
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RADAR ENVIRONMENT SIMULATOR
ENGINEERING TOOL, TEST SET OR TRAINER?

Edward J. Ayral

Cross Systems Division
AEL Industries
Alpharetta, Georgia 30201-7700

The admonition to "Simulate Before and During - Building, Testing, Buying and Fighting" is
certainly a-propos to Radar Environment Simulators (RES). Long used in the laboratory as a
design tool for the design of new radars and for the evaluation of hardware and software changes
to existing systems, RES evolved to test equipment for first article testing and production
acceptance testing. Now, because of the high cost of aircraft flight time and the danger of
broadcasting sensitive EW information, RES is emerging as an embedded field training and
performance monitoring system.

RESs have been defined as systems that stimulate a host radar at the RF, IF or digital level with
simulated radar returns. The end use of the RES, however, necessarily determines its ultimate
configuration. Rarely would a high fidelity system designed as an engineering design tool meet
the cost constraints and scenario requirements of a trainer. As designers of RES systems, Cross
is often confronted by potential users that desire to use a single configuration for all applications.
This paper attempts to illustrate why a common design approach is not practical.

RES AS A DESIGN TOOL

Many forces drove the radar design engineer toward a laboratory system that could provide
REPEATABLE electromagnetic environments for evaluating radar performance. Even
disregarding the expense, many environments such as flocks of birds and swarms of insects can
never be adequately tested in the field. Other requirements like hundreds of targets, jammers, and
clutter, are impractical and time consuming when attempted in the field. FCC restraints on
transmissions and other limitations have led to dependence on laboratory RESs for the evaluation
of radar designs, hardware and software design changes, development of new ECCM to counter

new ECM, etc.

When a radar designer specifies the requirements for a RES, he is concerned primarily with the
following:

- High fidelity. In this case, as repeatable as possible and as near as possible to
actual conditions. No surprises when the radar is tested in the field!

- Flexibility. Able to present different and new electromagnetic environments
through reprogramming.




- Performance. The capability to stress the radars capacity to the utmost. Many
targets, many jammers, severe clutter, etc.

- R&M. To a lesser degree and specifically not to hold up the program.

Since in most cases the designer is altering the radar to determine the effect of the alteration on
radar performance in a repeatable environment, he is little concerned with an analytic capability
that purports to identify a failure cause. The radar designer is also usually not concerned with size
or environment because, as the name implies, the laboratory RES is usually permanently
emplaced and used in the laboratory.

The configuration of the laboratory RES may also be somewhat dependent on the sophistication
of the radar customer. If the customer specifies that a RES be designed and developed prior to
or in consort with the radar design to be used for evaluation of the radar during development, and
if air defense personnel are involved with the RES design, the end result may be considerably
different than if the RES design is solely the responsibility of the radar designer.

FIG. 1 represents a typical RES used as a design tool.

RES AS A TESTER

In many cases the design tool RES suffices as the first article test set. First Article testing
represents the ultimate determination that the design meets the criteria and is generally performed
jointly by design and test personnel.

This is not the case for acceptance testing. When a program progresses to acceptance testing of
production systems it is presumed that the design has been proven adequate. The acceptance
tester, generally designed by the radar producer, must determine that each production system has
been properly built. A simple test set less expensive than a RES can be built which is more
effective and is concerned with the following:

- Pass or Fail. Each acceptance test must be defined in terms of absolutes which
determine correct or incorrect manufacture.

- Analysis. When a failure occurs, the tester should be able to analyze the cause of
failure and the corrective action required.

- R&M. More important than in the laboratory.

Often the test set is designed to be more like BIT than RES. Design emphasis is on analysis of
failure cause and determination of corrective actions rather than on end to end performance.
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RES FOR TRAINING

The greatest disparity between radar designers and air defence commanders is in the realm of
training. Training to a radar designer encompasses how to use the operator switches on the radar.
A radar designer’s concept for a training system typically consists of the radar operating console
and a PPI with a video display.

Conversely, an air defence commander would like to train with many real aircraft using jammers
and ECM, and firing missiles. He would like to direct real interceptors and fire real SAM’s.
Defence commanders equate the radar designers concept of training to learning to drive by
reading the owner’s manual! The RES concept which injects RF into the front of the radar is a
compromise that allows the commander to train using a large part of the defence system without
radiating information and without the need of air support.

NATO first recognized the need for an embedded RF training system in the early seventies as
the NATO Air Defense Ground Equipment (NADGE) was deployed. NADGE required that air
defense radars be permanently placed near threatened borders. In this situation, training
maneuvers with a large contingent of aircraft with jammers and other ECM equipment was not
only expensive but dangerous. To counter this situation and to enable operations personnel on
site and system wide to train in a realistic EW environment and thereby improve their mission
effectiveness, NATO produced document "Annex II to Enclosure to DS/ADSD (78) 65" which
required that a RES be supplied with each air defense radar. A later document stipulated that
each portable radar be supplied with a plug so that a RES could be utilized by the radar
commander whenever desired.

During the late 1970’s the U.S. Navy recognized a unique training and skill retention problem
within the Combat Information Center (CIC) aboard ship. CIC officers and radar operators were
thoroughly trained in such skills as target detection and tracking, Identification, Friend or Foe
(IFF) and jamming and chaff avoidance while in school using simulators and other aids. In
addition, modern air defense radars are equipped with moving target indicators, auto tracking, and
anti-jamming capabilities. When this combination of recently trained personnel and modern radar
first put out to sea, the skill level of our sailors was formidable. But, while at sea or in port on
duty, the opportunity to practice these skills proved to be extremely limited. In many ports,
radars are not permitted to transmit. While at sea, except for planned exercises involving aircraft
and other facilities far outside the ship’s captain’s authority, tracking and other skills could only
be practiced when an occasional transport or other aircraft flew over. In this scenario, jam
avoidance and IFF capabilities decayed while at the same time our adversaries radar avoidance
capabilities and techniques were changing and improving.

To address both the loss of skill in the CIC and the incorporation of newly learned enemy
techniques, the Navy equipped several aircraft with enemy mimicking jammers and chaff with
the intention of scheduling "Fly-over" training missions. During the missions that were flown,
inevitably, the aircraft were able to avoid radar detection and tracking. Once the Navy realized
the importance of continuous training in this area, the logistics and cost of using altered aircraft
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over a widely dispersed fleet of ships was observed to be economically unfeasible and the
shipboard embedded RES concept was promoted.

Radar operators need to be trained in ECM recognition and avoidance. They need to understand
under what clutter conditions they can reliably detect and track targets. Weapon controllers must
often make split second life threatening decisions when confronted with many targets while being
confused by ECM. Therefore, the training RES designer must be concerned with a large quantity
of targets in real time as well as the capability of the radar to detect targets during ECM and
clutter simulations.

Since the training RES is either embedded with the radar or delivered to a fielded radar for
training exercises, size, weight and environmental considerations are important.

The training RES design must also be concerned with cost since the training RES is generally
embedded with the radar on a one per basis. Fidelity is subservient to positive training. For
example, it is important that ECM and clutter affect the radar the way real ECM and clutter will,
so that the operator becomes familiar with expected attack scenarios, but no measurements of
these effects need be taken. As many targets as can reasonably be expected in an attack must be
presented and modified in real time. The training RES may generate signals digitally and inject
at the digital, IF or RF level as a balance between cost and fidelity. It must be flexible enough
to present different scenarios and ECM as Intelligence provides expected enemy capability. Since
the training RES is often embedded with the radar, limited subjective testing is often required for
use as a radar maintenance tool.

A typical embedded training RES is shown in FIG. 2.

FIG. 3 Represents a training RES for mobile radars.
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The following chart summarizes the requirements for the various RES:

REQUIREMENT DESIGN TOOL ACCEPTANCE EMBEDDED
TESTER TRAINER
FIDELITY High as possible Suitable for Must affect the
measurement radar as the radar
environment
REPEATABILITY | Essential Essential Limited importance
SATURATION- Important Not Important- By Essential for stress
QTY OF analysis training
TARGETS,
JAMMERS, ETC.
ANALYSIS Limited Importance | Essential Not required
CAPABILITY
SIZE & WEIGHT Not Important Not Important Critical
ENVIRONMENT Laboratory Factory Field Transportable
COST Relative to field Relative to test time | To be produced in
testing and fault analysis the same qty. as the
radar
CONCLUSION

While it may appear that a common design will suffice for various RES applications, careful
consideration of the requirements indicates that there are cost and other advantages to tailoring
the design to match the specific criteria.
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Abstract

SY Technology is developing an integrated optical and radar target signature code
for theater missile defense. The Theater Optical and Radar (ThOR) code is designed to
model threat targets from launch through impact (or intercept), including aerothermal
effects, environmental heating, thermal response, optical/radar signature, and sensor
effects. The goal of this program is development of a single, high-fidelity signature
generation capability for use by interceptor programs. Current uses include analysis of
flight test data, characterization of thrcat systems, evaluation of the effects of
countermeasures, and cvaluation of system performance in realistic scenarios. The
modular nature of ThOR allows the integration of existing, industry-standard codes such as
TSAP for trajectory calculations, a modified LANMIN for acrothermal calculations, and X-
Patch for static radar cross section calculations. ThOR is designed to allow substitution of
other codes if desired. Although there are existing separate codes which can caleulate
acrothermal effects, optical signatures or radar signatures, there has been no single code
which allows consistent, realistic target modeling for all of these applications. ThOR
provides a graphical user interface (GUI) through which the user defines all input
information, including trajectory and cnvironment, target dimensions and materials, and
sensor parameters. Sensor parameters include not only location, but also specific sensor
properties such as spectral response function, focal plane array type, quantum efficiency.
detector responsivity, and aero-optic effects. ThOR is unique in that it ensures that both
radar and optical signatures are based on the same target model. ThOR uses a knowledge-
based GUI to evaluate input for consistency and to screen errors before code execution.
ThOR includes a graphical data visualization application called Advisor (Advanced
Visualization of Simulation or Reality), which allows the user to analyze both simulation
output and actual measurement data. Advisor has the capability to reduce raw data from the
Sea Litc Beam Director and the Arrow interceptor focal plane array. Other sensor reduction
algorithms can be incorporated as desired. We will describe our approach in developing
ThOR and Advisor. We also will show ThOR simulations, and test data from SLBD
observations of Lance and Storm flights at White Sands Missile Range.

Introduction

The Program Exccutive Office (PEO) Missile Defense recognized the fact that there was no
signature code available that could adequately model the type of stressing conditions that
are a part of Theater Missile Defense (TMD). It was decided to develop a modular platform
that could use the best of existing codes in an integrated fashion. After review, if it was
determined that codes were unavailable or inadequate, codes would then be modified or
developed. Since this code would be applied by interceptor systems, it was decided to
include the codes that would model effects such as aerothermal heating and secker effects.

The PEO also recognized another weakness of the available codes, in that there was no
sharing of information between an optical and radar (RF) simulations. It is important to
share information, particularly shape definition, between the two simulations. PEO wanted
a modular platﬂorm that could accept RF facet generating models (such as ACAD,
BRLCAD, etc.). This process is shown in figure 1. This is important for the PEO since as
their systems (THAAD, PAC-3) are designed, developed and tested, everyone should be
working with the same specifications.

Theater Optical and Radar (ThOR) Code
ThOR is designed to usc a backbone of sclected codes, but the option is available to use

other codes, as the user sces fit. ThOR is driven through a graphical interface to case the
use of developing a simulation and uses a knowledge based system to check for errors or
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omissions before the codes are run. The input was designed also to be specific enough so
that the information could be translated for any input deck for any code. The philosophy
behind the development of the front-end was to make as easy as possible. whilc still
cliciting all the information needed, allowing the user to spend more time doing analysis
instcad of developing input decks.

Input Descriptions

The main screen of the input section is shown in Figure 1. Along the top are options of
running ThOR or using some of the programs continued in the toolbox. Most of the tools
in the toolbox are programs that the user will find useful, such as adding materials to the
thermal database, without having to leave the ThOR environment. On the top left portion
of the main screen is a status of the input. As the user defines sections of the input, a light
is turned on to indicate that that section is completed. The user can also readily tell how far
they can run ThOR by what input information is available.

iure . Main sr input section for ThOR.
In the lower left portion of the main screen is the way that the user chooses output
(subsequently, how far ThOR will run). ThOR is a knowledge based system and will

inform users that they do not have enough input if they request output that is not covered
by their input.

The environment screen is shown in Figure 2. In this screen the user is able to define the

type of earth model they desire, the position of the sun, and the type of atmosphere that is
needed.
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Figure 2. Environment screen to detail required inputs.

The trajectory input is shown in Figure 3. The user has the option of allowing the
trajectory code to calculate the ballistic trajectory, or propulsed trajectory. The user can
also use data from files that have either been generated by other codes, data from real
flights. or from previous ThOR runs. The files can be used to describe a portion of the
flight, then the trajectory code can continue the trajectory, if desired.

Figure 3. Trajectory input window.

The shape window is shown in Figure 4. The user can develop their target using the
resident facet generation code developed by SY Technology, or they can load in a facet
model generated by other codes, such as ACAD, BRLCAD, etc. If facet models of RF
targets are used, conversions are handled to decrease the number of facets for the optical
model. Typically, the optical model does not have to be as detailed as the RF model, but
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the choice will be up to the user, depending on the desire for run time or detail. In
conjunction with the shape definition screen. 1s the material identification screen (shown in
Figure 5). The user can model various material lay-ups using a material databasc that is
derived from the Optical Signatures Code Thermophysical and Optical Databasc. and
information gathered through the PEO programs.

iL 4. hpe definition window.

Figure 5. Material definition window.

The thermal window is shown in Figure 6. Most of the information that one would need to
run a thermal program is contained in the materials window discussed in the last paragraph.
In this window the user can dictate the type of heating that is desired. Currently, the user
can chose between running a modified LANMIN exoatmospheric and/or endoatmospheric,
or invoke EXOHT3 from the Optical Signatures Code to run in the exoatmosphere only. A
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feature that is common among most of the windows, is the capability to read in a file. This
is important because it gives the user the flexibility to read in temperatures gencraied by
other programs. It also allows the user to save time by running the simulation once, then
simply reading in the temperature file for subsequent simulations.

Figure 6. Thermal inutt window.

The signature definition window is shown in Figure 7. We have designed this window so
that the user can have the flexibility to calculate self-emitted and/or reflected components.
Being able to calculate only certain components is important for analysis of anomalous
phenomenology. This window details the parameters needed for a point-source signature,
such as wavebands.

Figure 7. Signature definition window.

256




The sensor designation window is shown in Figure 8. The user can choose cither a
resolved or point-source sensor. If modeling an imaging sensor, such as Arrow. THAAD.
or SLBD, then the user can detail parameters that are needed for a resolved signature, such
as focal plane type (InSb, PtSi, or HgCdTe), focal length, and aperture diameter.

Figre 8. Sensor dsiaton window.

After the user has defined all their inputs, they then choose the type of output that they
desire. The output that is chosen dictates the way that ThOR processes to obtain the
required data. From the main window, the user then invokes ThOR. All of the inputs arc
saved to an input file. The flow of this input process is shown in Figure 9.

QUI TaraGeT QU Plumer. . Radar/Optics
R " sy Radar Only
R GUI X-Patch Optics Only
= Pl O
. anne
& V4 V4
Plume/
internal RCS
Heating Hardbody
Interaction
=

Optical
poro-Optic | Thermal signature | ephone | Background
Effects Response {Point Effect Scene
[ ey Source/ [ [
Resolved) :
N ) i . &
GUI_wseex | GUI gxontas . GUIMODTRAN GUI': ssom
P s

Radical/ |
GUl Pixle §

Figure 9. Flow diagm of input process.
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ThOR Processing

After the input definition is completed and ThOR is invoked, the input is then read.
Depending on what has been written to the input deck, a certain path through ThOR will be
followed. A flow diagram of the ThOR processing is shown in Figure 10.

Figure 10. Flow diagram of interaction between codes in ThOR.

Table | shows the codes that are available within ThOR. Some of these codes have been
modified, such as LANMIN. LANMIN is an aerothermal code that does a particularly
predicting the thermal behavior of conical type of bodies. For our applications, we needed
LANMIN to be able to handle blunt bodies as well. LANMIN has been modified to
correctly predict the thermal behavior along a target body due to blunt nose effects. We
also modified LANMIN so that is calculated temperatures by taking into account the effects
that the environment would have on a body. A discussion of all the modifications of
LANMIN can be found in the ThOR users manual.
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Table 1. ThOR modules and status.

Module Function Status
TARGET/ Shape Input Developed/
ACAD Existing
TSAP Target, Sensor Existing

Trajectory
X-Patch Static RCS Existing
Dynamic RCS TBD
Plume effects 8D
Lanmin Aerothe rmal Model Modified
EXITS, Thermal Response Modified
EXOHT3
EXITS Environment Modified
IMAGE Resolved Signature Developed
MSEEK Seeker/Window Modified
Effects
AOQ Aero-Optic Effects Modified
THORMAT Thermophysical Modified
Data Base
THORRHOASCI Optical Properties Modified
Data Base
Advisor Output Visualization and Developed
Data/Simulation
Comparison

We are currently improving and expanding ThOR to include more codes for the user to
chose from. We are also continuing to add capability, such as using a static RCS database
of a target, and using the same engagement parameters, develop a line of sight RCS
signature.

SLBD Data of Storm Flights

We have been using ThOR and ThOR's post processor, AdViSOR (Advanced
Visualisation of Simulation or Reality), for the analysis of data. We have good success in
verifying the accuracy of ThOR's predictions as compared to data.

One particular data set is from the Storm 8 flight which took place at White Sands Missile
Range in New Mexico on 7 February 1995. The RV is a HERA target set on a Storm
booster. The target is shown in Figure 11. The trajectory and velocity are shown in Figure
12.

259




Time(sec)

300
OB0 e i N el .
200 b AN L i N C
€ -
1T T 2 R T e R e e S .
2 s
100 ~ " N ............... L.
50 4 NS e N B ;
— altitude | \ -
— velocity N

0 ¥ ) vu”‘d R "SR ir_\l ¥ ] ¥ ]{ i ' ] h ¥ v ¥ v a r i ¥ [

0 160 - 200 300 400 500 600

2400

2000

1600

1200

800

400

{ossau)Anoojep

Figure 12. The Storm & altitude and velocity.

Several sensors were at this test and acquired data. Included in the sensor suite is SLBD.
An image from SLBD of the Storm 8 and an image from ThOR of the SLBD viewing

Storm is shown in Figures 13 and 14 respectively.
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Figure 13. SLBD image of Storm §.

Figure 14. ThOR simulation of SLBD viewing Storm 8.
The target was instrumented with thermocouples, both in-depth and surface. A comparison

of simulated temperatures with measured temperatures from various locations on the target
1s shown in Figure 15.
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Further discussions of the validation of ThOR using the Storm data sets can be found 1n the
ThOR manual.
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AMBIGUITIES IN THE EW SIMULATION ENVIRONMENT

Paul R. Boehm
Advanced Systems Development, Inc.
Manager, Pacific Operations
San Clemente, California 92673

1.0 INTRODUCTION

Ambiguities can be considered one of the most costly problems in the EW community.
Ambiguities can add to testing time, increase data reduction time, and mislead engineers in
diagnosing problems. Training on a range can be for not if the lab trainers respond differently
to the real world. If the simulators and/or trainers do not provide the proper fidelity the
Electronic Combat Equipment may not recognize it or it may react differently against a real
system and this can lead to the loss of life.

Ambiguities appear when the EC equipment moves between lab, flight-line, test range, and the
trainers. Ambiguities fall into many classifications. Some ambiguities are unavoidable, when
they arise contingency plans need to be made and all the User’s notified of the problems. With
this notification several User’s will be aware of it and the trainers and other equipment can
account for it. Many ambiguities can be avoided from the beginning. If a detailed analysis is
made and the potential problem is recognized in the early planning stages of a project,
adjustments can be made. Of these potential problems, the following have been identified by
various sources as ambiguities that continuously appear.

1) Platform and EMI effects

2) Selected RF source mismatch
3) Pulse Shaping

4) Pulse train modeling

5) Dynamics modeling

6) Multi-player interaction.
1.1 PLATFORM AND EMI AMBIGUITIES

One ambiguity found between laboratory testing and test ranges is due to the platform the
Electronic Combat Equipment is mounted on. The most common of these is EMI but, the
platforms structure can also come into play. The EMI is on the top of the list, since EMI
characteristics can not be easily simulated and are not present in a lab environment. This is
because not all of the electronic equipment is present and/or is not in a normal operational mode.
For example, transmitters are off or being injected into dummy loads. The simulation of EMI
1s difficult due to its characteristics in general.

Testing in an anechoic chamber can increase the EMI effects since the actual platform with all
it’s electronic equipment is present and most of it active. However, there will still be unknowns
that are not present since this is a "clean" environment. For example, since engines are not
running in the chamber, platform power is supplied from either a support cart or some other
external source. It is possible that the prime power is conditioned better than the actual on board
generator(s). Another factor left out is the ever present, real world, EMI. By this [ am referring
to that produced by power lines, radio and television stations, and other such devices. More than
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one flight test failure was caused by these and other EMI effects. Undetected EMI effects have
been responsible for the loss of aircraft and lives during test flights and operational training
flights such as the initial loss of some helicopters from the EMI transmitted from high tension
power lines.

Platform structure is another effect that can only be partially checked in a laboratory and in some
cases even in an ancchoic chamber. The most common of these platform structure problems
concerns the placement of antennas. The poor placement of transmit and receive antennas can
cause interference between various onboard systems. Another can be a combination of the
platform, external stores, pods, and the antenna characteristics. These can cause blind spots that
can greatly reduce the capability of the Electronic Combat Equipment. Still another can be
caused by the antenna position relative to the platform engine. This is more prominent in prop
aircraft such as the E-2C Hawk Eye, the P-3C Orion, or modified C-130 Hercules, than on a jet

aircraft.

On a prop aircraft the propellers can interfere with and/or distort the signal. One such case can
be described as "self induced multipath". This is caused by a signal reflecting off the propeller
blade and into the receiving antenna. Depending on the traveled distance of reflected signal and
the carrier frequency, pulse amplitude can be reduced or even nulled.

In phase interferometer receiver based Electronic Combat Equipment, several effects can take
place. The first is dependent on the amount of distortion that is produced. Minimal distortion,
such as that caused by vibration or the modulation of the wing may only effect the DF accuracy.
If an antenna is mounted on the wing tip, the modulation may not only effect DF accuracy but,
can also cause the signal to drop in and out of blind spots. This could effect the mean time to
intercept but also give the illusion that the emitter is scanning.

If the distortion is immense, such as that caused by a propeller, the receiver will think it is
detecting multiple emitters each with its own AOA instead of a one simple emitter coming from

a fixed AOA.

An EMI effect that can be present in a lab, since various equipment is coupled together and may
not be present in flight testing, is from 400 Hz noise. 400 Hz noise from the Electronic Combat
Equipment can get summed into the 50-60 Hz simulator thereby effecting the integrity on the
signal. This is more of a problem on the Rack-and-Stack simulators that are not designed
properly and/or recognize that the problem could exist. Rack and stack simulators are those made
of Commercial-Off-The-Shelf test equipment such as Sine Wave Generators, Arbitrary Waveform
Generators and RF Synthesizers that are put together by a lab. When the rack-and-stack system
is connected to the EC equipment, the system’s ground and EC equipment ground corrupt each
other. In many cases Users do not even recognize the presence of the 400 Hz, or do not
understand the effect it may have in deteriorating the simulator signal quality. 400 Hz noise is
a big problem with many systems outside the lab also in particular on ships and submarines
where several different power sources are used from 28 Volt DC to 440 Volt AC at 50/60 Hz and

115 Volt AC at 400 Hz.
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1.2 RIF SOURCE AMBIGUITIES

An ambiguity that is difficult to diagnose may be due to the differences in the RF characteristics
between an actual radar system, a laboratory simulator, and/or a test range simulator. In general
a laboratory simulator’s RF is comprised of sources, such as VCO’s, and Synthesizers;
Attenuators; phase shifters; and pin-diode switches. These components are used to simulate the
scanning motion of an antenna; free-space attenuation loss; the characteristics of magnetrons,
klystrons, and TWT’s, such as rise/fall times and unintentional jitter; and the Angle-Of-Arrival
(AOA) of these radars relative to the position of the ownship.

Of all these components, the selection of the proper RF source type can determine the level of
fidelity that the simulation will have. Ambiguities due to the wrong RF source are becoming
more frequent because of advanced receiver/processors and smart jammers.

If one would look at all of the different radars, one would find that the carriers characteristics
can be defined into four classes.

1) Coherent Sources

2) Coherent Sources with modulation

3) Non-Coherent Sources

4) Non-Coherent Sources with modulation.

1.2.1 COHERENT SOURCES

The term Coherent, when referenced to RF
Sources is one of the most mis-used and
misunderstood terms in EW today, particularly
in simulation. By definition, a coherent means
"pertaining to waves that maintain a fixed phase
relationship”. Figure 1.2.1-1 is an example of a
coherent pulse train. Normally the term is COMERENT PULSE TRAIN
associated with synthesized sources. Cavity
Oscillators, VCO’s, and Synthesizers if tuned to
a single frequency and never retuned or turned
off during the test period will create a Coherent
signal. It is not unusual for a specification to COHERENT FMOP PULSE TRAIN
use the term coherent in reference to the use of
a synthesizer. Using a synthesizer for a source
only makes it a stable signal. If a synthesizer is
tuned elsewhere during the test period it is no
longer coherent.

TUYRAAAIATAVAVATAVATATAY V'V YANVAVAVAVATAY

COHERENT PULSE TRAIN
FIGURE 1.2.1-1

To simulate a stable Coherent signal, a phase locked synthesizer will do the job. If a Coherent
interpulse or pulse-to-pulse agility signal is required the use of multiple phased lock synthesizers
connected to a common reference signal and a Single-Pole-Multi-Throw switch to select the
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active source is an effective but, expensive approach. The expense is due to the added expense
of having to use multiple synthesizers to generate a single emitter. This approach is effective but
does have some limitations. However, this method cannot be used to simulate intrapulse
modulations due to the inherent design of these units..

1.2.2 COHERENT SOURCES with MODULATION

For a Coherent source that can be modulated to simulate pulse compression, Linear FM, and
FMOP. requires a special synthesized source to be designed. This design requirement is one of
the biggest challenges in the simulation marketplace. Two important factors must be designed
into the synthesizer. The first is the source remains stable and never breaks phase lock. The
second is the phase must remain continuous (constant) even during the modulating period and the

return to the start frequency.

In Figure 1.2.2-1, one can see the waveform of a coherent FM’d waveform. As frequency
changes the phase stays constant. If one were to use a VCO, DTO, phase-locked loop
synthesizer, or Yig tuned oscillator, and add a modulation, the waveform would look like a non-
coherent source. This is due to the basic design characteristics of these type sources. For
instance a VCO or DTO, have incidental FM’ing period that fails the stable requirement but, also
when a new tune command is given, the voltage change is a rapid, step change rather than a
smooth, controlled, lincar change.

For Phased-Locked-Looped synthesizers the
loops are unlocked and the synthesizer output
looks similar to the VCO. The problem with
these phase changes is they may be N\ AN ANY NN
\//\/ \x// \// \\ // \ // \ / \ /'/ \\ /

interpreted as a phase modulation

characteristic, such as a type of Barker Code. COHERENT MODULATION
In other cases this may corrupt a phase

) : . . FAOM TUNING COMMAND -
modulation code that one is applying to the \//

N VN
/ \\/\/ \/ \/ N

NON-COHERENT MODULATION

signal. These are more evident to a piece of f\ //\/\“'/
Electronic Combat Equipment that has Digital v
RF Memory (DRFM) technology as part of
the system. Another problem is that the
incidental FM’ing may confuse the jamming

logic and make it difficult to preform a COHERENT vs NON-COHERENT
deception technique such as velocity gate pull- MODULATED WAVEFORM
off Figure 1.2.2-1

For a proper modulation to be simulated a Fast, Direct Digital Synthesized (DDS) unit 1s
required. This DDS can be used to replace the phased lock loop circuit of a normal synthesizer.
The problem with DDS’s are that 8 bit DAC’s spurious are to high and corrupt the primary
signal. Twelve bit DAC’s that can operate at 500 MHz or higher clock speed are required to
meet the spurious and bandwidth requirements of the modern EW environment.  These
characteristics are the goals of several synthesizer houses today and are in the works, with
progress being made everyday.
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1.2.3 NON-COHERENT SOURCES

Non-coherent sources have no special requirement except for stability and shadow time. The use
ol non-coherent sources is very popular in multiplexed simulators. Because of this several
options are a available to the User. The most common in lab simulators is VCO’s or DTO’s.
These sources are the least expensive and in may ways provide a better capability for less
sophisticated equipment. Fast tuning synthesizers such as Comstron or the equivalent may be
used instead of VCO’s if stability is a requirement. The problem is that fast tuning synthesizers
are expensive.

1.2.4 NON-COHERENT SOURCES with MODULATION

Non-coherent sources that can modulate are common.  Fast tuning VCO and fast tuning
synthesizers are the most popular type of modulating source. These sources are capable of
multiplexing emitters, providing broad band interpulse agility capability, simulating high
incidental FM’ing Characteristics and intrapulse characteristics such as Chirps. The faster the
settling time and the higher the resolution the more linear these signals will be. The problem that
can occur with this type source 1s, they have a tendency to overshoot, prior to settling at the
proper frequency. If this happens during intrapulse modulation the signal will appear noisy and
non-linear. The sources must have a damping system that allow maximum speed with minimal
overshoot. The capability to correctly handle overshoot comes from years of experience and is
not normally found in off-the-shelf-sources.

1.2.5 SELECTION OF THE PROPER SOURCE

The selection of the proper mixture of sources is based on several issues. The first of these
issues is to understand what type of EC equipment is being tested. If the EC equipment has
limited receiver capabilities such as crystal video systems, it is more cost effective to use VCO
based sources.

The second is to understand the characteristic of the emitters that are going to be simulated. A
problem that has been noted in flight testing against actual systems and laboratory simulators is
the differences of the carrier itself due to the type of RF source selected.

Many labs, in an effort to save money, will buy off the shelve synthesizers and arbitrary
waveform generators to make a "home brewed" simulator. In many cases this will be sufficient
to do basic testing against Electronic Combat Equipment but, it costs more in flight test time
trying to resolve the lab test versus flight test results.

One such problem related to this was where an EC receiver would work in the lab against a
"home brewed" simulator and fail flight test. After several failed tests, the User rented time and
brought the EC receiver to a facility that had a full up simulator. The problem was found in less
then 2 hours. The "home brewed" was synthesizer based, the radars that it failed against where
older magnetron type radars that had a large incidental FM characteristic. The simulator
emulated these characteristics and the problem was seen for the first time in the lab. It ended
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up that the synthesizers were too stable for the simulation. When the system went up against an
unstable source it did not know how to track it.

1.3 PULSE SHAPING

Pulse shaping capability is becoming more important as more channelized receivers are being
installed in all types of platforms. A characteristic that is becoming more common in ELINT
receivers is fingerprinting the pulse for future reference. If a pulse is fingerprinted and associated
with the exact platform that generated it, one can then use this data to not only identify the radar
type but also the serial number. This can be valuable for multiple reasons including Battle
Damage Assessment. Without this capability, if a strike is made against a radar on one day and
the same type is active the next day in the same area, one would assume that the strike was
unsuccessful. If the radar was fingerprinted before the strike and then checked the day after the

strike, one can assess if it is the same radar or a new one.

In dealing with rise/fall time ambiguities these
are primarily related to channelized systems.
Figure 1.3-1, shows the differences between a
pulse generated by a simulator and one \
generated by a typical radar. As on can see
the lab simulators pulse has fast rise and fall /\Mﬁr\ B
times, typically in the 10-20 nSec range, with v

very little fingerprint characteristics which is /
the characteristic of a pin diode switch.

R
°| ‘ﬂ 30 nSce

TYPICAL LAB SIMULATOR PULSE SHAPE

Because pin diode switches are known to be A Fomet T b e
used, many times Users will specify a fast TYPICAL RADAR PULSE SHAPE

rise/fall time, thinking of how the receiver

would def&ect it easier without a full PULSE SHAPING
understanding of the consequences. In the FIGURE 1.3-1

past some User’s have recognized the problem
but back then the technology was such as controllable rise/fall time switches where not available.

Today several methods exist or are near term to handle this problem.

If one did an analysis of all the emitters in one’s scenario, one may find that rise and fall times
are actually in the 30-1000 nSec range and have very distinguishing characteristics because of
the technology used to create them. Most of the characteristics is do to the thermeonic device
that is used. This difference in rise/fall simulations can greatly effect how well an Electronic

Combat Equipment reacts to the environment.
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If one would compare the spectrum bandwidth
of a slow rise/fall time with a fast rise/fall
time, Figure 1.3-2, one would observe that the
fast rise/fall time emitter would have a
spectrum spill over into more channels then
normal, thereby reducing the probability of
intercept of other emitters that may fall into
these side channels. This difference can cause
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orders of magnitudes in sensitivity loss
thereby decreasing the actual pulse density of
the lab simulation versus the test range
scenario. This differences can be the delta
between a piece of Electronic Combat
Equipment handling the environment or going
into saturation due to the high pulse density
and failing.
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CHANNEL SPILL OVER EXAMPLE
FIGURE 1.3-2

Another problem that fast rise/fall times can cause is the creation of addition signals by the
receiver. If one were to amplitude modulate the spectrums in Figure 1.3-2 relative to the
scanning motion of the emitter, one may find that the signal in channel #2 is only present every
5-8 seconds for 6 mSec. To a receiver this could indicate a signal 30 MHz or more away and
try to process it. This is especially true for an emitter that can have multiple simultaneous RF
beams.

1.4  PULSE TRAIN MODELING

The modeling of pulse trains is an arca where most Users make many assumptions that end up
playing total havoc with a lab scenario or a flight test. This is also a prominent area where
commonality is vital but is the most often overlooked. Some of the blame for this can be put
on the End User. This is because this User may incorporate the receiver limits as the
specification for the simulator. 1n doing this the User has automatically asked for ambiguities
to be part of the testing cycle. One of the most common specifications that is ignored is with
clock based radars. A User may specify that the PRI resolution shall be 100 nSec or 50 nSec
which equates to a 20 or 40 MHz clock. These limits once again are typically based on the
capability of the receiver or conventional technology.

If one would analyze the PRI values of the radars, one would see that many are based on fixed
frequency clocks. The most typical values of older systems are in the 150 to 600 kHz range.
This in turn means that the PRI can only be a multiple of that clock value. As an example, if
a radar had a 150 kHz clock with a PRI countdown of 53, the PRI would be 353.33333 uSec.
With only a 100 nSec resolution an error factor has already been added to the lab simulation
versus the test range. The same can be said for new systems, again they are clocked based but,
with faster clocks making the error factor even larger.
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In cases where high powered transmitters are used on the range versus a replicator or real system
this error may be a factor that has been added to the testing environment but, not the real
environment. This means that the first time this ambiguity may appear, is in a critical situation.

Another problem that is waiting to arise is when a User, after noticing that the EC equipment
reacts the same against a radar in a one-on-one test mode with or without a pulse train feature
present, decides to simplify the test to save resources. In these cases, the User may not even
bother to add the characteristics on to the simulated emitter. In most cases this will come back
to haunt them at the most inopportune time. What is not asked by the User is, " What happens
when multiples of this or another emitter appears with this emitter?". A User must always
remember that a pulse, even though it is not detected by the receiver, is present in the receiver
and if a pulse is present in the receiver, the time that it is present may effect another pulse that

can be detected.

For an example of this look at figure 1.4-1. ‘;”‘i {‘If“, I ' ‘
These pulse trains are appearing at various ,‘M\'J\H.”M *‘;,,M
times in association with an electronic scan

dwell. A receiver may not react any ,
differently with "M" Burst programmed into J 1
a emitter or not. This lack of an "M" burst T
may be due to the limitation of one’s

5

-
MULTI FUNCTION DWELL

simulator such as the number of complex | BT I R
signals that can be done or for some other ’ M J |’ Lol ’
reason. The problem is that the pulses of ‘ P
"M" burst will occupy a period of time in the | | ’ H | ‘ Ji H H
receiver of 25 uSec. In a multiple emitter T vkauRsT epeaT a xo

COMPLEX PULSE TRAINS
FIGURE 1.4-1

environment that occupation may effect the
detection of another signal. This is especially

true when more than one of a radar type is
present. The amplitude of this burst may be higher than that of a detectable pulse, thereby

creating a pulse-on-pulse situation that the receiver may not handle in a multi-emitter
environment.

1.5 DYNAMICS MODELING

The addition of dynamics to any test can complicate matters and add ambiguities that were never
considered. These ambiguities can be the result of power changes due to free space attenuation,
mode transitions, multipathing (particularly in over the water test), atmospheric conditions, and
receiver antenna pointing position relative to the platform.

Free space attenuation effects are probably the most common of these type problems. Most
simulators create signals based on a two dimensional plane instead of three dimensional. To add
{o this problem the target position in the scan is fixed. What this means is that the main beam
of the threat is always on the ownship platform. In reality, it is possible for the platform to fall
into sidelobes and nulls particularly in the elevation plane of a scan. This can effect the detection
range of the receiver or depending on the flight profile cause the signal to drop in and out.
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Another ambiguity that is related to free space attenuation can effect smart/power managed
receivers. These systems track the amplitude of every pulse from an emitter to determine the
jamming strength and extract parametric information. With this information the system can
determine the scan period and even the multiple periods of some scan types such as Bidirectional
sector and Raster scans. To perform this function the EC equipment must have a defined logic
as to determine from sweep to sweep what is the most powerful pulse.

In a non-dynamic scenario environment this is not a difficult problem since many variables stay
constant. In a true dynamic scenario environment nothing is constant nor can be 100% predicted.
I one were to do a quick analysis of all the variables and conditions that determine if an emitter
can be intercepted and processed, one could see that a poor dynamic simulation can cause a
magnitude of ambiguities. Consider the following simple scenario, a circular scanning radar
whose antenna is 15 feet Above Ground Level (AGL). The ownship is an aircraft traveling at 450
knots at 250 feet AGL in a terrain following mode with an amplitude comparison receiver.

If one where to look at this in the simplest sense, the obvious variables that would change would
be the received amplitude of the pulse due to the scanning motion and to free-space attenuation
as the aircraft to emitter range changed. Another factor is the initial detection of the emitter due
to the horizon created by the curvature of the earth and terrain characteristics sure as mountains
and hills. These are basics that almost every trainer, lab simulator, and mission planner look at.

Unfortunately, for the EW community as a whole, life does not consist of simplistic solutions,
especially in the simulation world. To even come close to a test flight replication numerous other
factors come into play. By applying six degree freedom of motion, the receiving antenna
characteristics becomes a major factor. The banking motion of an aircraft can blind the receiver
by pointing the antennas away from the transmitter. Because of this problem, the receiving
antenna must be simulated in three dimensions. This simulation must not only be angular
sensitive in azimuth and elevation but also in the frequency domain.

Multipath can also effect a receiver in many
ways. Multipath can increase the strength of

the signal the receiver detects or reduce it to ‘ - eezagls
practically nothing. If one broke down the ‘ = é
major components of a multipath signal, one PRMARY PATH -~ |

: ‘ |

would find that it contains its own elevation
Angle-Of-Arrival and maybe an azimuth AOA
also. It has it’s own Time-Of-Arrival and its
own amplitude relative to the reflective
quality of the reflecting surface plus, free
space path loss. The combination of these st
variables mixed with the true path signal can MIFROR (MAGE ‘
create unusual signal characteristics as shown
in Figure 1.5-2. To simulate these effects MULTIPATH
correctly an extensive amount of additional FIGURE 1.5-2
computing hardware and RF hardware is

MULTIPATH

~+,
!
1
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required. The normal signal path needs to
be split off into two separate paths. The
one will be the normally modulated signal.
The second which is split after the
modulation has been added is then time
delayed, attenuated, and phase shifted to
reflect the multipath signal characteristics.
This signal path is then summed into the
normal path signal, thereby creating a true
signal, Figure 1.5-3. This simulation is
easier over water than over land but still
requires a large amount of processing
power to compute these characteristics in
real-time. With an over the land scenario

l [ PRIMARY PATH PULSE

MULTIPATH PULSE

v

PHASE MATCHED COMBINED SIGNAL

[VAVAVAVAY

PHASE MISMATCHED COMBINED SIGNAL

the reflectivity constantly changes due to
the composition of the terrain. Repeating
a test with the same results on a test range

can be difficult due to the use of expendables.

MULTIPATH EFFECTS ON A PULSE
FIGURE 1.5-3

Each time an aircraft approaches an emitter and

pops chaff the multipath factor and test results change. In the late afternoon when the wind
increases the chaff is scattered and 2 new multipath factor is in effect. Other effects such as

wind, rain and clouds can also effect a flight

test.

The most critical factor that effects every aspect of the test is the human factor. With the number
of personnel required to conduct 2 flight test this becomes even a bigger factor. Lab simulators
require the capability to add these random factors into a test to get good resulis. One method is
by adding multi-player, man-in-the-loop, consoles to a simulator to allow outside intervention of

the environment.
1.6 MULTI-PLAYER INTERACTION

Multi-player interaction is one of the most
forgotten effects in all test results, training
missions, and real world situations. Most lab
systems, trainers, and cven {light tests only
concern themselves  with  a one  player
environment. The problem is that unless that
is the normal mode of operation one will not
truly understand the capabilities of ones
Electronic Combat Equipment.

Self protect jamimers and a flight’s own radars
can also create their own problems. If one
looks at the determining factors for an RWR
or jammer to process an emitter it looks at
PRI, Frequency, and AOA as a minimum o
categorize a signal for tracking. In an EW

MULTI-PLAYER INTERACTION
FIGURE 1.6-1
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scenario where jammers use broad beamwidth and broadband jamming antennas jamming signals
are transmitted all over the environment, multi-player interactions take place. If one where to
look at the placement of emitters in Figure 1.6-1, one can see that one wingman’s jammer could
be transmitting into another wingman’s systems and using resources. To a jammer and or
receiver, the jamming signal from aircraft C’ can be triggering aircraft "A". To make matters
worse 1s that aircraft "A’s" jammer would be using valuable assets to jam what appears as a lethal
threat but in reality is not lethal to A’. In return, A’ signal could be effecting "C’s" signal.
Another is when a flight group begin activating all of their radars when weapons delivery is
commencing. The worst case of this type of interplay that has been documented is, that some
countries have everyone in a flight group operating at all times. The reason for this has wide
speculations but, the fact is that it wastes each others jamming and receiving resources that may
not be present during normal testing and training. In meetings and discussions with test range
and analysis personnel, they have noted that more flight test failures have happened when
multiple players have been introduced.

A multi-player characteristic that is becoming more prominent concerns multi-tracker, multi-
function radars that adjust to the environment, such as the Former Soviet double digit systems,
the Patriot, and SPY-1. With these type of radars, the number of players effects the results that
you see. These radars, not only effect lab simulation, trainer, and flight line testers, but, they
effect the test range simulators.

To accomplish this capability, these radars use such technology as slotted array or space feed
array antennas. These systems use phase controllable elements to electronically point the beam
instead of physically moving the antenna. These system’s can reposition their mainbeams on any
target within microseconds. This repositioning can decrease or increase the visit time that the
Electronic Combat Equipment sees the signal and also increases the chances to multiply jammer
interaction, especially among wingmen.

Present range simulators such as the MUTES, Mini-MUTES, and AN/FSQ-XX with their
conventional thermeonics devices, electro-mechanical positioners and antennas, cannot reposition
fast enough to simulate these radars. In many cases these systems are unable to keep up with
tracking a single high performance target. To assist in this problem these systems use broad
beamwidth antennas. The problem with this is that several aircraft can be stimulated at the same
time causing false test results. To simulate a multi-tracking radar system one really only has
three choices;

1) Go with the present convention and accept the results will be flawed.
2) Use a system that has multiple antennas that can be pointed independently.
3) Use an electronically steerable antenna.

Obviously, the second and the third solution are a more expensive method but, will provide the
most accurate environment, depending on the technology used, and can have a long term cost
savings. The decision on what method is to be used must be weighed based on the End User
requirements and on what the final goal to be accomplished is.
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The state-of-the-art in electronically steerable antennas is solid-state, phased array antennas based
on Microwave Monolithic Integrated Circuits (MMIC) technology. This technology is being
employed in radar such as the USAF F-22 Advanced Tactical Fighter and expendable decoys such
as Texas Instruments Gen-X units. MMIC technology in radars and for test range emitters
provide a capability never seen before.

As previously stated, this problem is not limited to the test range system, it is also a problem in
lab trainers. The difference is that test range systems have physical limitations such as
transportability, the amount of air space and land available, the cost versus the number of emitters
that can be generated. Labs simulators have other limitations that the range do not have such
as EMI effects.

It is widely believed that the most economical way to build a trainer and provide a solid
simulation is with a software intensive system. A large percentage of all trainers are software
based. The complete receiver and threat models are emulated in software. The problem is that
one has a software mode! that interprets what the actual Electronic Combat Equipment software
is telling the hardware to do. This in itself means that you will have a faulty model. Software
based systems have several inherent problems. Some of these are:

1) Most software solutions are designed to model the characteristic of the displays.
In may cases the emiiter library consists of only the symbols that are to be
displayed for each mode of operation. This means that the simulation will not be
accurate.

2) If the displays are the primary concern then the models will not be detailed
encugh to account for pulse-on-pulse characteristics, identification ambiguities, or
the saturation of the receiver due to excessive pulses.

3) Problems arise from attempting to completely model an environment in real-time.
As previously discussed, the USAF is working towards this with their J-MASS
program and at the present time the accurate models can not run in real-time even
in a one-on-one scenario.

With hardware based trainers many of these problems do not exist. This is primarily because

these trainers use a complimentary blend of actual ECE hardware, simulation hardware with
receiver emulations boards, and emulation software.

2.0 CONCLUSION

Ambiguities will always exist in every phase of EW testing. If one is aware of the ambiguities
ahead of time and plans for them time and money can be saved.
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ABSTRACT

Mission Research Corporation has developed a system, known as the Automated Process of
Countermeasure Association, commonly referred to as CMAT (sponsored by the Air Force Pilot's
Associate Office and NAVAIR). CMAT is the designation of our approach to threat system sit-
uation awareness and reaction strategy generation. CMAT is a complex system that contains an
extensive set of integrated algorithms and data representation schemes. The purpose of the CMAT
system is to autonomously recommend an optimal countermeasure and/or coordinated maneuver
response to the pilot in order to assist him defeat an attacking threat system. The inputs to the
CMAT system are the measurements made by the ownship's various onboard sensors which
measure the radar, infrared, and/or kinematic profiles of airborne or ground-based threats
(offboard sensor data can also be utilized as available). The output from CMAT is the optimal
threat response action which is then recommended to the pilot. CMAT uses a variety of artificial
intelligence techniques, including fuzzy uncertainty management and mimic net automated learn-
ing. These techniques were specifically designed to handle the unique and challenging problem as-
sociated with threat response in environments of high data uncertainty.

An important feature of the CMAT algorithm is that it actually calculates the effectiveness of every
response option. We purposely avoided a rule-based system in order to maximize CMAT's ability
to automatically adapt to new intelligence information concerning the description of known enemy
threat systems, countermeasure effectiveness profiles and sensor information. The calculation
procedure takes into careful consideration the threat-to-ownship engagement geometry (azimuth,
elevation, time-to-go, and launch range), sensor measurement uncertainty, fused sensor data, intel-
ligence uncertainty concerning the operating characteristics of known threat systems, multi-threat
scenario effects, and a premission threat danger map which describes spatial likelihoods of known
threat systems.

By monitoring the processed intercepts and detections from the avionics, countermeasure reactions
are selected and scheduled. By considering all potential threat systems represented by signal inter-
cepts, and determining whether an antiaircraft missile is on the way, the CMAT procedure selects a
response to maximize survival prospects considering this and possible future threats to ownship,
mission constraints, and aircraft status. Countermeasure selection maximizes the estimated fre-
quency of survival without requiring a threat identification. The entire database of likely threat
systems is considered in the reaction selection. The CMAT approach is unique in that it uses a
data driven algorithm to accommodate changing information without requiring reprogramming of
the system software. Information concerning threat capabilities, intelligence estimates, tactical
innovations, signature changes, and avionics sensor enhancements are placed in editable databases
which are then used by the CMAT program.
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Introduction

Over the past several years MRC has been developing an automated threat response and threat pri-
oritization program for several customers, including the Air Force's pilot's associates office and for
NAVAIR. This system, which is called CMAT (Countermeasure Association Technique), is a
complex system which contains an extensive set of integrated algorithms and data representation
schemes. The purpose of the original CMAT system was to autonomously recommend an opti-
mal countermeasure and/or coordinated maneuver response to the pilot in order to assist him de-
feat an attacking threat system. The inputs to the CMAT system are the measurements made by
the ownship's various onboard sensore which measure the radar, infrared, and/or kinematic pro-
files of airborne or ground-based threats (offboard sensor data can also be utilized as available).
The output from CMAT is the optimal threat response action which is then recommended to the
pilot. The system currenily consists of over 25K lines of validated Ada code. It uses a variety of
artificial intelligence techniques, including fuzzy uncertainty management and mimic net automated
learning. These techniques were specifically designed to handle the unique and challenging prob-
lem associated with threat response in environments of high data uncertainty.

The objective of the CMAT work has been to design and demonstrate an artificial intelligence sys-
tem that reduces pilot workload in the areas of threat classification, prioritization, and response rec-
ommendation. In our approach we have focused on the following features: system adaptability,
system trainability, efficient data access, accommodating system growth, efficient data compres-
sion, and uncertainty management.

By monitoring the processed intercepts and detections from the avionics, countermeasure reactions
are selected and scheduled. By considering all potential threat systems represented by signal inter-
cepts, and determining whether an antiaircraft missile is on the way, the CMAT procedure selects a
response to maximize survival prospects considering this and possible future threats to ownship,
mission constraints, and aircraft statns. Countermeasure selection maximizes the estimated fre-
quency of survival without requiring a threat identification. The entire database of likely threat
systems is considered in the reaction selection.

The CMAT system concentrates on achieving three functions:

o quality assessment, fusion, and processing of the sensor data available on tactical aircraft
o recognition and priority assignment to threat situations requiring response
o recommendation of viable defensive reaction given the threat situation

The CMAT approach is unique in that it uses a data driven algorithim to accommodate changing
information without requiring reprogramming of the system software. Information concerning
threat capabilities, intelligence estimates, tactical innovations, signature changes, and avionics sen-
sor enhancements are placed in editable databases which are then used by the CMAT program.

Natural language and graphical database interfaces have developed that allow the extensive
database information to be displayed and cdited with great efficiency. These interface tools cnable
the CMAT system to be readily tailored for aircraft, tactics, threats, and theater as required by the
Army, Air Force, or Navy. This adaptive, data driven approach also has the benefit of removing
the CMAT system from the debate over what reactions and tactics are the proper ones. The proper
responses and the corresponding effectiveness estimates are added to CMAT by the ultimate users
using the database interfaces.
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Another unique feature of the CMAT development is the use of efficient data compression and
fusion techniques to manage the large amount of expected measurement data. The CMAT system
uses quantitative discrimination to associate measured data with stored data, but represents this
data in terms of fuzzy sets to manage data uncertainty. Finally CMAT uses a unique MRC-devel-
oped tool, called the mimic net, to provide threat prioritization and recommendation of optimal
threat response. The mimic net is adaptable and trainable like a neural network. It is able to
quantitatively identify through off-line training, the various costs and benefits associated with
candidate threat response options.

The products delivered to the Air Force at the end of the Small Business Research Program
(SBIR) Phase II program included a final report as well as the proprietary CMAT algorithms,
which were implemented in over 25000 lines of ADA code. These algorithms include the inter-
faces to the natural language database, the countermeasure/maneuver effectiveness database, and
the missile launch envelope database. This work has been extended by NAVAIR under a new
Phase II SBIR effort. Under this new program, MRC is incorporating the CMAT algorithms into
the Navy's SH60B rotorcraft platform. We are also identifying the requirements to retrofit CMAT
to additional Navy Platforms, including the V-22, H-53 and F-18.

The major functional components of the CMAT procedure are:

1) the sensor post processor (performs multi-sensor data fusion, trackfile sort, search and
binning),

2) the chalkboard memory manager (manages missile kinematic and radar signature trackfiles,
performs trackfile fusion, temporal trackfile management),

3) the survivability estimation module (calculates countermeasure/ maneuver survivability es-
timates, considers response effectiveness against multiple threats), and

4) the resource optimization module (uses mimic net training procedure, down selects opti-
mal response option considering mission objective, mission phase, costs of available re-
sources).

These four basic CMAT functional blocks are shown in Figure 1 and explained in the subsections
below. The key CMAT system features are summarized in Table 1.

CMAT Component Descriptions

Sensor Post Processor. The purpose of the sensor post processor is to store, fuse, and sort mea-
sured datasets (trackfiles and/or contact reports) collected by onboard sensor systems. We group
these datasets into two types: radar signature data or missile JR/kinematic data. Each dataset con-
sists of measured threat attribute values and their associated measurement variances.

Typically, there will be few, if any missile trackfiles, corresponding to few missiles in flight in the
battle area. In contrast, there could be thousands of radar signature datasets, corresponding to all
active radars as well as spoof emitters, acquisition and tracking radars, and search radars. The sig-
nature datasets enable threat identification and permit appropriate threat response strategy.
However, the radar signature datasets must also be associated with the missile datasets. This is
especially difficult when angular resolution is low and there are great numbers of distinguishable
radar datasets. Within CMAT, two data buffers are maintained, one for each dataset type.
Specific algorithms (threat prioritization, or threat response recommendation) join the two datasets
according to their specific needs. This architecture minimizes errors that would result if radar
datasets were mistakenly associated with missile datasets.
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Sensor Postprocessor

o Stores Measurements
o Performs Multi-Sensor Data Fusion

;

Y

Chalkboard Memory | o Makes time-to-go estimates

o Converts Measurements to Fuzzy Sets
o Manages Trackfiles

o Employs hybrid Fuzzy Logic/Baysean Logic

system to characterize threat attribute uncertainty

v
Threat Response o Generates List Of Best Response Options
Evaluation o Evaluates Response Option Survivability

%y

Response Selection

o Strategic/ Tactical Tradeoffs With Mimic Net
o Selects Op timal Response From List

¥

Optimal Response o Recommended To Pilot

T

Figure 1. Primary CMAT Functional Blocks

Table 1. Key CMAT System Features

-Data driven

Does not require reprogramming for new threat environments.

-Mimic Net Exactly mirnics expert’s selection criteria for threat
prioritization and threat response recommendation.
-Fast, Efficient || Uses data compression, graphical database access, analytic
compuiations, parallel architecture, neural processors.
-Adaptive Readily retrains to changing data. Adapts to expected threat
densities, mission objectives, and pilot preferences.
-Manages Accommodates WARM threats, uncertain intelligence, sensor
Uncertainty data corruption.
-Multiple Recommends effective response against multiple missile
Threats launches
-Joint CM/ Recommends a combined countermeasure / maneuver
Maneuver response which maximizes joint effectiveness while
response minimizing resource cost considering future value of
expendables, and ownship exposure.
-Ada 25000 lines of Ada code
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The two buffers are structured as 2D binary trees indexed on azimuth and elevation angles of ar-
rival. The benefit of organizing trackfiles using binary tree storage lies in the use of corresponding
binary search strategies that efficiently locate and sort tracks into 'bins’. Efficient data structures are
a consideration since potentially numerous trackfiles will be simultaneously active.

As new datasets are added to the buffers, a distance measure is calculated between each new
dataset and the trackfiles already contained in the corresponding buffer. The distance measure is
developed from estimated measurement variances. The data is fused to minimize the variance of
the combination. The variance estimates are derived using sensor resolution and estimated signal
to interference ratios in information theoretic expressions for the particular discrimination proce-
dure. These variances are corrected for estimated sensor loading errors. Tracks judged to be simi-
lar are fused into a single Trackfile. This not only improves the quality of the measurements, but
helps reduce the number of trackfiles to be stored. If a dataset is not sufficiently similar to any of
the existing trackfiles, a new trackfile is created in the appropriate buffer.

Chalkboard Memory. The purpose of the chalkboard memory module is to download data from
the sensor postprocessor and convert it to a format recognized by the rest of the CMAT system.
The significant feature of the chalkboard memory manager is that it centralizes data storage and
allows all system modules to retrieve and update data. This architecture not only provides for ef-
ficient storage of all measurement data in one place, but is also flexible to permit future modules to
be integrated with minimal interface difficulty. The three primary functions of the chalkboard
memory module are: trackfile attribute formatting, all-source attribute fusion, and memory man-
agement.

Due to the many sources of data uncertainty!, multisensor fusion and the associated problem of
managing data uncertainty are required characteristics of an automated threat response system. To
achieve these characteristics within CMAT, the sensor input data is formatted to be compatible
with CMAT's uncertainty management algorithms.

In traditional data fusion systems, Bayesian logic-based techniques are employed to correlate
trackfiles and estimate target ID. This method is best suited for discrete-valued inputs, so mea-
sured target attributes are represented accordingly. However, not all attribute profiles are conve-
niently suited for this type of representation. Measurement uncertainty can be oversimplified or
ignored, and meaningful parameter details are lost. Consequently, a Bayesian-based data fusion
system supports only limited source information, not all-source information, as desired.

Alternately, robust data fusion systems that employ fuzzy and Bayesian based algorithms offer
significant advantages over ones that only process discrete-valued parameters. In these robust sys-
tems, parameter uncertainties are represented using either mean/variance data (the classical ap-
proach) or by fuzzy sets. Fuzzy sets, which are applied to represent continuous-valued trackfile
attributes, are a straightforward method for representing all possible values each target attribute
may posses across the entire attribute spectrum. Fuzzy sets can be used to describe non-standard,
multi-modal target attributions distributions in a rigorous manner.

ISources of uncertainty include intelligence information, sensor resolution and interference, sensor
overloading, as well as threats that operate using specially reserved wartime operational modes (WARM
threats).
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Figure 2. Converting Measurement to Fuzzy Set

Within CMAT, a hybrid combination of both Bayesian logic and Fuzzy logic is used to manage
data uncertainty. Each trackfile attribute is represented by using one of these forms?. The choice
of form is made based on the unique requirements of each attribute. Threat attributes such as ve-
locity, acceleration, and IR color ratios are represented using mean and variance data. Bayesian
logic governs how multiple similar-sensor reports are combined for each of these attributes.
Threat electronic intelligence (ELINT) data such as RF, PRF, GRF, and PW are represented using
membership functions. Fuzzy logic governs how their associated similar-sensor reports are com-
bined. For example, Figure 2 shows how a threats RF signature can readily characterized using
fuzzy sets.

The measured feature value converts to the center point while the feature measurement variance
converts to a fuzzy set width. Two chalkboard short term memory banks (CSTM), one for mis-
sile data and one for signature data are used. After downloading and formatting the datasets from
the sensor post processor data buffers, the chalkboard memory module integrates the newly for-
matted trackfiles with those that are already in the CSTM. This is accomplished by comparing
each newly formatied dataset to each existing trackfile in the CSTM using a distance measure.
This measure includes a fuzzy set proximity test to compare fuzzy features. Datasets that pass the
gate criteria are fused into a single trackfile. Scalar data and fuzzy data are fused to minimize mea-
surement variance. After each newly formatted dataset has been processed the sensor post proces-
sor buffers are cleared to make way for new sensor data

As newly formatted datasets are fused with datasets already in the CSTM, a reinforcement coeffi-
cient associated with the fused dataset is increased. Conversely, the coefficients associated with
datasets that did not get fused are decreased. Thus greater emphasis is given to datasets that are
seen repeatedly in successive update intervals. If a particular dataset's coefficient drops below a
threshold, the dataset is deleted from memory, reflecting that the particular measurement is no
longer confirmed by the sensor systems. The CSTM also stores data from the response option

2We are currently exploring adding Shafer-Dempster logic as a third option within CMAT to provide added
flexibility with the trackfile uncertainty management options.
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generator and threat assessment and prioritization modules about threat classification for use by the
rest of the modules in our CMAT system.

Survivability Estimation. The survivability estimation procedure generates a ranked list of appro-
priate threat response options (countermeasures and/or maneuvers) using the data in short-term
memory. This procedure is robust in that it provides optimal countermeasure recommendations
even though threats may be operating in wartime modes that may be are different from those cata-
logued in the threat library. It also makes reasonable recommendations in the presence of uncer-
tain data, or when measurement data is incomplete. Finally, the survivability calculation procedure
is entirely database driven so that it does not become obsolete as threats or countermeasures
change. Change in these data items is accommodated by updating the corresponding CMAT
database.

In the CMAT procedure, three steps determine the effectiveness of the threat response options,
Figure 3. In the first step, the signature datasets corresponding to each detected threat are pro-
cessed through a layer of threat neurons. Each threat neuron calculates a measure of similarity
between the observed threat and a threat catalogued in the threat library. In the second step, these
similarity measurements are modified based on the threat density probabilities specified in the
threat map. In the final step, the similarity data is processed through a layer of countermeasure
neurons. Each countermeasure neuron evaluates the effectiveness of a particular response option
based on similarity information, engagement geometry, and the countermeasure effectiveness data
stored in another database.

The similarity calculation is shown in Figure 4. The Figure shows how the CMAT system han-
dles uncertainty information. A fuzzy pair is formed for each trackfile attribute consisting of: a)
the attribute membership function of the observed threat, and b) the attribute membership function
of the catalogued threat in the threat library. For every such pair, the fuzzy set intersection is com-
puted. This value is then weighted by the relative importance of the particular feature. These val-
ues are summed together to form one value, the similarity measure of the observed threat to the
particular known threat.

The survivability estimation procedure makes reasonable countermeasure recommendations when
there is incomplete or missing data. For instance, suppose a detected threat is operating in a mode
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entirely different from those catalogued in the threat library. Such a situation may result in a
measured attribute value that has no overlap with the fuzzy set descriptions of the corresponding
attribute of the known threats, Figure 5. To mitigate this problem, the fuzzy set corresponding to
the particular observed feature is iteratively broadened until some minimum overlap is achieved.
The similarity measure for that feature is then recalculated and a response recommendation is
made based on this new calculaiion.

This technique is an implementation of a common-sense generalization algorithm. Simply stated,
response recommendations are made that are most effective against all threats that are most similar
to the detected threat. When attribute information is lacking and the threat ID process is uncertain,
CMAT chooses a robust response that has good effectiveness against all threats that are similar to
the detected threat. When there is information that improves the threat ID, CMAT fine tunes its
response to optimize ownship survivability. Thus, a robust response is selected when there is
limited threat information. A tailored threat response is selected when there is sufficient threat ID
confidence to justify the tradeoffs between response robustness (survivability against multiple
threats) and response effectiveness (survivability against any one given threat). A summary of
these and other key characteristics of the threat neuron procedure is outlined in Table 2.

In the second step of our strategy generator procedure, the similarity measurements from the threat
neurons are passed through a layer of proximity neurons. Here, data from the threat map is used.
This map is constructed during the premission brief using intelligence information and premission
briefing data, which specify the probable number and locations of each catalogued library threat.
Finally, each similarity measure is compieted by multiplying it with the threat probability estimate.
The resulting similarity measure represents the proximity between the observed trackfile and
known threats stored in the threat library, with adjustments made for data uncertainty and known
threat density probabilities.

Relax feature descriptions as necessary before making final threat similarity decision
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Table 2. Threat Neuron Key Features

e Simultaneously accommodates sensor measurement uncertainty and database threat
description uncertainty via the use of fuzzy sets.

» Uses a selectable weight to reflect variation in a feature's relative discrimination importance.

e Uses a parallel architecture which allows for efficient processing of the fuzzy pair data

¢ Uses piecewise analytic functions for membership function representation which allows for
very fast closed form analytic solutions to the fuzzy intersection.

» Uses a completely data driven approach.

Figure 6 shows the third and final step in which the similarity measures are passed through a
response neuron layer. The survivability estimate is calculated by considering the likelihood of the
detected threat being each of the known threats in the database. The countermeasure effectiveness
is derived for engagement geometry and kinematic parameters of the engagement. This algorithm
has the benefit that its operation does not depend on whether dissimilar signature datasets were
fused together in chalkboard memory. This is because the threat response algorithm always
considers the likelihood that the detected threat is each known threat when calculating survivability.
We again point out that we use a parallel architecture so that processing speed is independent of the
number of response options. Also notice that we use a completely data driven approach. Changes
in the effectiveness database are made without requiring changes to the response neuron algorithm.

Reaction Selection. The list of generated reaction strategies, ranked by estimated effectiveness, is
processed by our Reaction Selection module. This module makes the high level, tactical trade-offs
necessary to finalize the strategy selection. The CMAT system considers mission, tactics,
complex trade-offs, estimated effectiveness, and aircraft status by directly mimicking off-line
databases of expert knowledge. A library of expert knowledge supports this function.

A linear programming based neural network called 'Mimic Net' was developed to handle the
unique requirements associated with automating the pilot's cost-benefit tradeoff countermeasure
selection intution. The autonomous reaction system was designed to select a response for effective
ownship reaction to immediate antiaircraft threats. A list of reaction options along with their
estimated survival rates was generated as the set of reaction options to consider. These options
were considered together with further trade-offs.
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Figure 6. Response Neuron
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Several of the difficult to guantify trade-off considerations were the immediate survival risk versus
the value of mission success, the potential future value of expendables and fuel, and whether de-
fensive reaction would expose the aircraft to further, deadlier threats. The mimic net approach was
conceived as a result of a search for a technigue which could encode and generalize from electronic
warfare expert and pilot reactions to a wide range of representative threatening scenarios. The
training scenarios used in the mimic net training procedure consisted of complete descriptions of
the mission and engagement. The expert was given the same information that was to be provided
to the automated reaction selection system. Once trained, the mimic net exactly reproduced the
expert's threat response reaction sirategy.

The mimic net training algorithm utilizes linear programming to discover a feed forward network
which, when operated on the training data, exactly mimics all of the selections made by the expert.
Training is accomplished by automatically extracting countermeasure ranking constraints derived
from each scenario in an off-line training database, Figure 7.
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Figure 7. Mimic Net Automated Training Block Diagram

Key Features. Most neural networks require that an expert establish an interconnection architecture
for its neural elements before training is initiated. One of the principal features of the mimic net
technique is that it automatically discovers an architecture which is best suited to the training data.
The construction procedure produces the smallest size network that accommodates the training
data. As a result, the mimic net procedure discovers a network architecture that possesses the
greatest degree of generalization. Furthermore, the analyst is provided flexibility for exercising
precise control over how the network extrapolates from learned behavior to new problem
situations.

Databases. Integral to the CMAT threat response recomimendation system are the databases
containing the descriptions of the known threat systems and countermeasure survivability profiles.
The first such database contains all threat attributes described in terms of fuzzy sets, such as radar
frequency, pulse repetition frequency, and pulse width. A second database contains descriptions of
the threat inner and outer taunch envelopes. A third database contains the compressed survivability
profiles.

Data compression for the problem of automated threat response recommendation is essential to

allow real-time integration of the multidimensional survivability profiles. CMAT employs a data
compression scheme that is based on physics-derived separable functions in conjunction with
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analytic functional fits to the numeric aspect-dependent survivability data. The result is a highly
compressed analytic representation of survivability, which enables survivability profiles to be
integrated in real-time across all dimensions of survivability dependence. The limits of integration
are established based on the target engagement geometry estimates and the associated estimate
uncertainties. Thus, survivability is estimated as

U+o
[sas
H-O
where
i =mean vector of survivability dependence factors
= [azimuth, elevation, range, time-to-go, altitude, and air velocity]

. ¢ = standard deviation associated with x
S =survivability as a function of x and ¢

One recent technical advancement enabling the efficient compression of large tables of reference
data for use in an automated system is Chebyshev functional expansion of multidimensional
tables. This methodology simultaneously achieves three goals:

o Large tables or figures of data are compressed into a limited number of
expansion coefficients

* The fit process is a well conditioned, efficient numerical procedure
permitting an interactive graphical interface

e The average value of the function, necessary to assessing the mean value
of the data over uncertainty regions, is nearly as readily evaluated as the
function itself

The Chebyshev polynomial fit is closer in method to discrete Fourier expansions than to least
squared (LS) error polynomial fits, although the fit is in terms of polynomials. Instead of
minimizing the fit error at each of the input data points, this method uses a local polynomial fit to
evaluate the interpolated function at preselected points, and then passes a polynomial curve through
those points.

In a LS fit, the order is determined and then the polynomial of this order with the least squared
error, summed over all the input data points, is evaluated. This evaluation involves the inversion
of the linear, normal regression equations. This inversion is a notoriously ill-conditioned problem.
And even when the inversion is numerically feasible without resorting to a singular value
decomposition, the inversion is much less efficient than the FFT based algorithms we have
employed.

It has been observed that the Chebyshev polynomial is approximately equal to the minimum max-
imum error (min-max) polynomial fit, as opposed to a LS fit. The advantages of this approach
are:
» Reduced operation count:
NM(log2(N) + log2(M)) versus (NM)3
* Fit is well-behaved numerically versus ill conditioned matrix inversion
¢ Approximate min-max rather than LS fit criterion
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The purposeful selection of a fit criterion provides for an efficient evaluation of Chebyshev polyno-
mial expansion coefficients. The Chebyshev polynomial expansion coefficients, ¢y, are defined
by:
v 1
fo= 3 e Ti100 - 5¢1
k=1

The choice of expansion and the discrete orthogonality of the Chebyshev polynomials provides a
simple inversion formula for the expansion coefficients:

2 N
G= N 20 cos(li - Dk - )
=1

Thus, the evaluation of the coefficients requires an orthogonal, cosine transform of function values
at selected points. This evaluation is performed efficiently using Fast Fourier transform methods.

From the Chebyshev polynomial expansion of a function, a Chebyshev polynomial expansion for
the integral of the function is readily derived. Thus, averages of the fit function are evaluated
nearly as efficiently as the function itself.

Since our concern is to maximize the survival chances of ownship, the probabilities of survival in
the range 0.5-1 are of more concern than small probabilities. Data fitting errors lead to estimated
effectiveness values greater than one or less than zero. Both concerns are mitigated by performing
the curve fit to a function of the actual effectiveness. The desired function has a conveniently
calculated inverse function, forces the fit fidelity to be best at higher effectiveness values, and limits
the effectiveness to less than unity. All these desirable features are achieved by the choice:

foy=1-(1-P)”

The model curve fit is made to this function, rather than to the actual effectiveness values, P(x). If
any calculated value for fis less than zero, it is truncated to zero with no significant loss of fidelity
since effectiveness values near zero are of no interest.

Conclusion.

This paper described the CMAT methodology for automated countermeasure response
recommendation. The various components of CMAT were described, including the sensor post
processor, chalkboard memory, survivability estimation, and response optimization modules. The
CMAT design emphasizes the importance of a data driven architecture, the careful handling of
threat and intelligence uncertainty, and the need to compress the numeric databases so that numeric
procedures can be used instead of generalized rule bases when calculating survivability. CMAT
has passed the feasibility demonstration phase and is now being integrated within the SH-60B
platform for its debut application. The CMAT feasibility development was sponsored by the Air
Force under a Phase I/IT SBIR cffort. The current SBIR phase IT SH-60B integration effort is
sponsored by NAVAIR.
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BACKGROUND

In recent years we have seen remarkable advances in digital technology that have enabled
our weapons systems to achieve unparalleled advances against various threat systems that
exist in the world today. The direct by-products of these advances are that we have
developed systems that rely more and more on software to adapt to changing and
evolving threats rather than hardware. For every new or changing threat that we wish to
address with overall system capability, we have to make a change in the Operational
Flight Program (OFP), or the software, that controls how the hardware analyzes the data
observed or collected in a war-time operating environment. Unfortunately these "simple”
software changes are never as straight forward as we might hope. In other words for
every change in one source line of code that we wish to implement, to address a new
requirement for a US. weapon system, we absolutely must ensure that the changes that
have been introduced did not in any way adversely effect the overall weapon system level
performance against all other requirements. This system level testing occurs at various
contractor and Department of Defense (DOD) facilities around the country depending on
the system undergoing testing. Since the test methodology used is location specific
depending upon what Radio Frequency (RF) generating hardware is available to emulate
the threat, and since the information that describes the threat characteristics may be
contained in multiple databases, the task of developing sound test procedures for Radar
Warning Receiver (RWR) OFP testing is a very complex matter. The system level
verification testing that is required for updated RWR OFPs is therefore highly dependent
upon the skills of the personnel performing the tests and their site specific test
methodologies that have been developed over the years. The Computer Assisted Test
Development and Reporting System (CATDARS) program was initiated to assist the test
engineers in developing the test scenarios required to test the updated OFPs. This paper
discusses and gives an outline of the CATDARS program and addresses in particular the
RWR system level testing that is performed in the Electronic Warfare Integrated Support
Facility (EWAISF) of the Simulation and Analysis Group (WR/LNEV) of the Electronic
Warfare Division (WR/LN) at Warner-Robins Air Logistics Center (WR-ALC), Robins
AFB, GA.
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OVERVIEW

One component of Warner Robins’ Simulation and Analysis Group is to test OFP updates
to the RWRs that they have sustaining engineering responsibility to maintain. Currently,
this process is very labor intensive and relies beavily on the skilled engineers and
technicians at WR/LNEV. To improve the process of testing the RWR OFPs, the Wright
Laboratory's Readiness Technology Branch (WL/AAAF) in concert with WR/LNEV have
initiated several programs to improve the overall testing efficiency of WR/LNEV and
therefore reduce the overall 18-month cycle for an OFP update. These projects include A
Digital Avionics Methodology Schema (ADAMS), Low Cost Interactive Stimuli-
Generating Test Station (LISTS) and CATDARS. ADAMS will develop, prototype, and
demonsirate a methodology to perform more rigorous, timely, at RF testing of EC
systerm/subsystem OFP software. LISTS is developing a low-cost, portable, high fidelity
microwave threat environment for stimulating the EC equipment while the concept
behind the CATDARS project is to derive and demonstrate a generic software based tool
that utilizes current testing knowledge to aid in the development of emitter test files that
drive the RF generators used in the testing of RWR OFPs.

This paper describes the efforts underway by Sverdrup Technology Inc./Technical,
Engineering and Acguisition Support (TEAS) Group under contract with the US Air
Force to develop a prototype CATDARS system. The CATDARS program objectives are
to formulate and demonstrate a generic software based tool that acquires and exploits
current EC system testing know!edge relative to the WR/LNEV testing of RWR OFPs.
The goal is to automate the front end functions required to define and create the required
threat definition test case files for EC system testing. The CATDARS program will
develop a potential software tocl for extracting information from the Electronic Warfare
Integrated Reprogramming Database (EWIRDB). The information obtained will support
the generation of emiiter test files that are used to drive an RF generator, The Advanced
Standard Threat Generator {ASTG) that injects an RF signal to excite an RWR to test
and evaluate the performance of new RWR OFP releases. Additionally CATDARS wili
provide for a files management system to update and maintain test files created vsing the
CATDARS system. This effort will also potentially provide a core software tool that is
easily customized by other individual tasks to provide a desired unique output. Most of
the software tools in use today thas utilize the EWIRDB are very good at what they were
designed to accomplish, however, most were tailored to a very specific application. Our
goal is to develop CATDARS to have an inherent modularity so that it may be used in a
variety of applications other than RWR OFP testing (i.e. building Mission Data Files for
weapons or electronic jammer pods).

At the heart of the CATDARS eifort is capturing the processes that are used to develop a
new tesi file for a particular threat. Our goal is to accomplish this utilizing new and
evolving commerciafly available database software that provides the opportunity to
improve and automate the use of the EWIRDB and other electronic parameter databases.
The key is to be able to access the EWIRDB information to allow for a much more user
{riendly operating environment in which to build the needed test files. The rapid

288




development of many new, widely used, and relatively powerful database systems
provides the opportunity to develop more flexible tools and more easily tailored querics
of the EWIRDB for each individual EC system. Moreover, while working with the
EWIRDB, these tools may be used on a personal computer (PC) allowing interaction with
other PC software. This paper explores the application of such popular database software
to the standard EWIRDB products provided by the National Air Intelligence Center
(NAIC) for the generation of valid threat test files.

The CATDARS methodology is scheduled to be demonstrated in March 1996 using an
AN/ALR-69 Mod IV RWR stimulated by an AN/ALM-234 (the ASTG) EC test-bed
located at Robins AFB, GA. The ALR-69 Mod IV was selected because it is currently
undergoing testing at WR/LNEV and seemed the most viable test platform. The ALR-69
is the RWR that is currently used onboard the F-16 Falcon. For the demonstration at the
end of this phase of the CATDARS program we will only be working with a subset of
approximately 20 Electronic Intelligence (ELINT) Notations (ELNOTS) out of the entire
EWIRDB.

SYSTEM DESCRIPTIONS

The CATDARS system may be required to operate with several other systems that are
currently being developed for use in the EWAISF in the conduct of RWR test activities
(see figure 1). Short descriptions of these systems are provided in the following
paragraphs so that the reader can better understand the overall system architecture and
division of functional responsibilities associated with the test activities that this system is
envisioned to be part of in the EWAISF. The collateral systems described in the
following paragraphs include the ASTG, ADAMS, and LISTS.

ASTG

The ASTG is an electronic warfare threat simulator system that is used for the
testing and validation of airborne RWR and Electronic Countermeasures (ECM)
at WR/LNEV. It consists of an RF threat signal generator unit, a VAX 8600
computer system, controlling software programs, VAX computer system software,
and various terminals, tape drives, printers, cables, etc.

The ASTG generates RF signals that simulate electronic threats in a real-world
environment. These signals are introduced to the antenna connector(s) of the unit
under test, and the unit’s performance is then measured to determine its behavior.

ADAMS

The ASTG test methodology is an example of a manually-operated test process
because the operator must manually configure the ASTG to generate a threat
signal and then note the test results on measurement instrumentation. ADAMS
automates the test loop by commanding the ASTG Scenario Execution program to
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generate sequences of threats as described by the ASTG’s scenario and emitter
files, and then notes the test results from the unit under test.

ADAMS is a PC-based system that controls the ASTG through its existing forms-
based video terminal interface, and collects test data from the unit under test via a
MIL-STD-1553 data bus interface. ADAMS provides a script file capability so
that the user can automate the testing process for a number of threat signal
environments and then record the test data for each threat. An initial version of
ADAMS, known as ADAMS I, was demonstrated at WR/LNEV with the ASTG
and an ALR-69 RWR. During this demonstration the ADAMS achieved a 50%
reduction in test time.

LISTS

The LISTS program Proposed Environment Overview
is intended to
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portable, nigh
fidelity microwave
threat environment
for stimulating the
EC equipment. It
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CATDARS REQUIREMENTS

The ASTG emitter file development process requires the analyst fo examine the
EWIRDR for candidate emitters, select valid sets of data for the emitters” operational
modes that are of inierest, adjust this data to reflect other sources of information or
specific test requirements, and enter this data into the ASTG using the ASTG’s Scenario
Development program. The Scenaric Development program then produces the emitter
and scenario files that the ASTG uses to simulate a threat environment. The generation
and maintenance of the ASTG’s emitter files is a particularly laborious process because
the analysts who do this work must manually browse the EWIR database, as well as other
sources of information, to find their information. Also, the information in the existing
emitter files must be compared against new assessments of those emitters in the
EWIRDB updates to keep the emitter file characteristics up to date.




CATDARS will ease the emitter file generation process by automating the low-level
mechanics of the EWIRDB browsing and file maintenance processes. The analyst will
then be able to spend more time in determining the required characteristics and
parameters of test emitters, instead of becoming bogged down in the emitter data
collection process.

The CATDARS system is intended to provide the analyst with on-line access to the
EWIRDB. The analyst will use CATDARS to select an emitter from the EWIRDB that
would be used in a particular test, using a Graphical User Interface (GUI) based point-
and-click user interface presentation. The analyst will then be able to select the ELINT
parameters for his emitters from the database and use CATDARS’ point-and-click user
interface to call up supporting information from the database for particular characteristics,
including suffix codes, suffix tables, references, and comments. The analyst will be able
to modify any or all of an emitter’s parameters based on the information that he derives
from his analysis of the emitter’s characteristics. Once the analysis process is completed,
the analyst will then save the emitter and it’s parameters into a test file for later use with
the ASTG. CATDARS will also provide an interface to the ASTG Scenario Generation
program to build the ASTG emitter files, using the information contained in the
CATDARS file management system.

INTERACTIVE TEST FILE BUILBING

In order to build a test file, all the information needed to characterize the emitter
must be captured. The user obviously cannot be the sole source of all of this
information. Nor could CATDARS anticipate the personality of the test for which
the file is being built. Therefore, the user and CATDARS must build the test file
in an interactive environment. CATDARS must be able to provide the user access
to various sources of information depending on user preferences, type of test, etc...
while relying on the user to provide guidance. Examples of information that
CATDARS will be required to allow user-access to include:

Parameter values from previous test files; this will provide insight on

parametric values chosen for previous tests.

Parameter values from the EWIRDB; to provide the range of values available

for a parameter, as well as, the latest intelligence data.

Similar parameters for similar emitters from the EWIRDB; to provide

intelligence data for emitters that may share performance characteristics that

are similar.
CATDARS will walk the user through various screens while extracting the
information needed. The information will be recorded into the CATDARS file
management system for use in building the ASTG test file.

FILE MANAGEMENT

Test files may be generated from scratch, re-used, modified slightly for a related
test, or simply referenced for individual parameter values. For example, if the
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user wishes to build several very similar test “Ciles, the file management system
will provide access to values used in previous files. This will allow the user to
simply modify the one or two parameter va! es that have changed between the
tests.

Out-dated test files may contain parameter values extracted from the EWIRDB
that have now been updaied, If this now out-dated test file is referenced, it is
desirable thai CATDARS provide the user some feedback. The problem lies in
the ambiguous relations hm between the parameter value, its true value, and the
multiple values maintained in the database. The following examples illustrate the
complexity of attempting to recognize EWIRDB dependent, out- dated parameter
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required to interface with the EWIRDB CD-ROM Query System and Suffix
Matrix Expander. Both products have been developed by NAIC with years of
experience and user feedback. For this reason, they may be the best browse
applications to meet the requirements of CATDARS.

Ultimately, CATDARS must interface with the ASTG to provide the parametric
data captured during the test file generation. The format of the ASTG input file is
complex and the methodology of the software to generate this file is not readily
duplicated. The ASTG software has very limited interface capabilities and
therefore the current approach to interfacing with the ASTG involves two steps.
The first step will be to generate a Test File Script that contains all the keystrokes
necessary for the ASTG Software to build the Test File. The second step will be
emulating the keystrokes contained in the Test File Scripts that will build the
emitter file in the ASTG Software.

CATDARS TECHNICAL APPROACH

Sverdrup Technology has developed a technical approach for the development of the
CATDARS concept demonstration system. This approach is outlined in the following
paragraphs.

1. Sverdrup first determined a candidate set of requirements for CATDARS. This set of
requirements contained the CATDARS top-level system and interface definitions,
functional requirements, and design constraints. These requirements served as a
structural starting point for further research and investigations.

2. Sverdrup then investigated existing EWIRDB tools and test processes to determine
their applicability to CATDARS. The EWIR tools discussed below all mechanize the
EWIR browse/select function and the suffix matrix expansion function to some degree. It
is to our customer’s advantage for us to examine these tools to better understand these
processes. It may even be possible to use some of these tools as a part of the CATDARS
system, instead of re-inventing an existing tool. It is also critical that we understand the
analysts’ actions and thought processes so that we can refine functionality and the user
interface. To date, we have examined the following tools and applications:

Computer-Aided Electronic Warfare Information System (CAEWIS): This tool is
used by the USAF Air Warfare Center at Eglin AFB for browsing the EWIRDB
and expanding the suffix matrix. It runs on Sun workstations and uses the Sun X-
Windows graphical user interface. The CAEWIS user can select an emitter of
interest by ELNOT and then examine that emitter’s parameters. If desired, the
user can also expand the emitter’s suffix matrix and then examine the
characteristics of the emitter’s mode combinations. CAEWIS can produce limited
user specified output files of extracted or modified data.
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EWIRDB CD-ROM Query System and Suffix NM‘[H/{ Expander: NAIC
distributes an EWIRDB guery program and suffix matrix expander program with
the EWIRDBE on CD-ROM. These programs pmwde the end user of the
EWIRDE with the capzbility of browsing the EWIRDB and extracting emitter
information intc disk files for further use. These applications are IBM PC-based
as well as UNIX-based and use a graphical user interface.

WR/LNEVY Tools (BROWSE, EXPAND, TAP): These and other applications
were developed over the years by personne! at WR/LNEYV for browsing the
EWIRDB and expanding the suffix matrices. The tools run on DEC VAX
computers under the VIS operating system.

dpphcanom that couid be lmkeﬂ into ihe CAT”A RS software system. This could save
us from developing these applications from scratch and allow us to concenirate on the
EWIR analysis support and file manipulation capabilities of CATDARS.

3. Next we looked at and began analyzing the ASTG and its interfaces. This work when
completed will allow us to develop an effective CATDARS - ASTG interface. Our
understanding so far includes the following:

The operator programs the ASTG to simulate the desired threat emitter by using an
ASTG VAX software application known as the Scenario Generation program. The
operator uses this pro gmm to construct a mode! of the particular test scenario and
associated emitter that is required for a particular test. The Scenario Generation
program’s output is stored in two VAX disk files, known as the scenario description file
and emitter description file. The scenario description file contains the information that
the ASTG RF generator uses to simulate emitter locations, distances, etc. while the
emitier description file contains the information that the ASTG RF generator uses to
simulate the threat emitter’s RF frequency, PRI, PW, and antenna pattern and scanning
characteristics. The operator must use the Scenario Generation program to build a
scenario file and an emitter file for every combination of emitter modes and scenarios that
he needs to simulate. CATDARS must provide an interface to the ASTG Scenario
Generation program in order {c transfer the emitier information from CATDARS into the
ASTG emitter files

on the information captured in _uepu 7 and 3 to produce a detailed set of CATDARS
system requirements and final sysiem arduuem“ure This will be used to produce a
CATDARS prototype that will th the ASTG fo produce actual test files for a
limited number of candidate EV

4. The next step in our overall approach is to refine the requirements from step 1 based

5. At the conclusion of the CATDARS demonstration phase of the program the prototype
CATDARS system will be transported to WR/LNEV for a functional demonstration of its
capabilities with the ASTG in a rea! testing environment. The CATDARS host computer
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is anticipated to be connected to the ASTG through an existing RS-232 serial terminal
line so that it can communicate with the ASTG. Once connected, CATDARS will be
tested both by itself and in conjunction with the ASTG to confirm that it meets
requirements, and also to validate the CATDARS user interface with the user
community.

POTENTIAL OTHER USES FOR CATDARS

One of the potential pay-offs with the CATDARS program is that the concepts employed
here should be able to be used by other agencies who draw on information contained in
the EWIRDB or similar intelligence databases for the generation of test files or other sets
of information as may be required by their particular endeavor. We are attempting to
develop the CATDARS system such that it’s underlying structure and design
methodology may be tailored to support other systems/agencies such as the EWOLS and
STEMS at Robins AFB, GA, the CEESIM and the Electronic Warfare Operational Test
System (EWOTS) at the 513th ETS at Offut AFB, NE, the Air Warfare Center and the
Advanced Multiple Environment Simulator (AMES) at Eglin AFB, FL, NAIC at
WPAFB, OH, and the 412th Test Squadron at Edwards AFB, CA.

CONCLUSIONS

The CATDARS program is underway with a large portion of the requirements defined
and specific implementations being worked at this time. We are currently on schedule to
demonstrate in March 1996 the CATDARS concept using the ALR-69, Mod IV as the
test unit in conjunction with the ASTG at WR/LNEV. As of the writing of this paper
indications are that we'll be able to meet the project objectives of hosting this software
tool on a PC based system and provide a level of automated test file building capability
that is currently not available.
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PC-BASED RADAR ENVIRONMENT SIMULATOR

Raymond L. Durand
Technology Service Corporation, Santa Monica, CA 90405

Introduction

Radar Environment Simulators (RES) have proven to be very useful in the development, testing, and
operator training of radar systems. A RES allows the radar to be used in a laboratory environment without
requiring a cooperative target environment. It can inject simulated signals directly into the radar's receiver
or can be configured to radiate its output toward the radar under test in an anechoic chamber or test range.
The operator can define a simulated scenario which typically includes targets (aircraft, missiles, etc.),
clutter (land, sea, weather, etc.) and even jammers which test the radar's ability to operate in the presence of
electronic countermeasures. These scenarios can be run repeatedly to evaluate radar performance, trouble
shoot problems or to train operators.

This paper describes a low cost, PC-based RES developed under a company-sponsored IR&D program,
that maximizes the use of commercially available off-the-shelf (COTS) hardware and software. The
development effort benefits from more than twenty years of company experience in providing RES
solutions for a wide variety of radar simulation requirements.

The RES includes high speed digital signal processing (DSP) modules housed within the PC that perform
real time signal generation of target and clutter signal returns. A Virtual Instrument Control Panel, based
on National Instrument's LabVIEW® for Windows, provides a flexible, industry standard graphical user
interface that facilitates operator training and provides a mechanism for custom test configurations.

Technical Overview

A RES generates a real-world simulation of the environment that a radar would see if it were radiating in
its normal operating mode. The RES must be fully synchronized with the radar and have access to the
radar’s timing and control signals. These signals include the radar’s Pulse Repetition Frequency (PRF),
antenna pointing angles (azimuth & elevation), transmit frequency, and range clock signals. Radar
synchronization represents a real-time challenge to a RES, particularly with modern electronically scanned
antennas, since the RES must be able to respond to nearly instantaneous changes in the radar’s timing and
antenna parameters.

Traditional RES systems utilize a host computer that works with custom designed hardware to provide real
time injection of radar environment signals into the radar. The host contains the data base of parameters
used to generate radar environment scenarios and one of its principal functions is to channel this data to
special purpose, real-time signal generating hardware. This channel often becomes the bottleneck in RES
systems, since random access to the large volume of radar environment data is limited by disk/tape access
times and computer bus bandwidths.

The complex timing and interface requirements of a RES make it a very specialized piece of test equipment

which is often priced beyond budgets of test and training organizations. In response to demands for lower
cost RES solutions, a new RES has been developed which is based on an IBM compatible personal
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computer and modern DSP technology. The new approach not only results in a lower cost system, but one
that is flexible, easy to use, and requires less physical space than previously available systems.

The following block diagram and technical description further describe the major components of a single
channel RES. Multiple channel systems, i.e., a RES configured for a monopulse radar, can be configured
with additional plug-in modules described below.

CPU RAM
1B Compatible PC fAonitor Digks
Keyboard Digital
Output
Radar Radar Input { Wavef Quiput U EIRF
- adar Input . : Waveform v 4]
Interface - L= D3P E 2 fmpd sk o ;
Signale Interface > DSP Engin i Generator T Interface “7 Converter Output
Clutter
Engine

Figure 1. Single Channel RES Block Diagram
IBM Compatible PC

The RES digital electronics are housed within an IBM compatible PC. The PC provides the chassis and
power supply for the digital plug in modules. These modules provide the interface with the radar and
generate the simulated radar returns. The PC itself is not involved in real time processing; it provides the
operator interface and supervisory control of the digital modules. The speed and performance capabilities
of the PC are not factors in RES signal generation. The performance of the PC is merely reflected in the
responsiveness of the operator interface, which is described later in this paper.

Radar Input Interface

The Radar Input Interface module obtains the synchronization signals from the radar and communicates
these signals to the remaining digital modules within the PC. The signals include the radar's PRF, range
clock, azimuth and elevation angles, transmit frequency and other pertinent control information. The
module contains an area for user defined, custom circuits which provide the bridge between the radar’s
unique signal interface definition and the interface used internally to the RES.

DSP Engine

The Texas Instruments TMS320C30 floating point processor serves as the heart of the signal processing
used in the RES. Operating at 40 MHZ, the device is capable of performing 32 bit, floating-point
operations at a rate of up to 40 MFLOPS (millions of floating point operations per second).

In a major departure from conventional RES designs, high density, static random access memory (SRAM)
is used to store scenario information within each engine. This SRAM is initialized by the PC during
system initialization, and contains information for the entire scenario. This eliminates the need for real-
time updates by the PC, and simplifies the system design. This SRAM is also dual-access - both the PC
and the DSP have uncontested simultaneous access to data and control parameters.
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Figure 2. DSP RES Engine Block Diagram

The DSP Engine is synchronized to the radar via the radar interface circuitry, which provides the basic
timing and control information from the radar. Radar environment information is stored in the SRAM in a
time ordered list of update parameters, from which the DSP performs the calculations to provide targets
and clutter in response to the radar’s current operating mode and field of view. The DSP indexes through
the scenario, typically with a resolution on the order of 10 to 100 Hz, using a programmable, timed
interrupt.

During each pulse repetition interval, the DSP must determine which signal returns are within the radar’s
field of view and perform the calculations to accurately represent these returns with respect to the radar’s
PRF, transmit frequency, and antenna weighting. Firmware, which is loaded by the PC during
initialization, executes assembly language routines which operate in a real time, interrupt driven
environment to perform the required calculations. A dual port memory is used to store the calculated 16 bit
in-phase and quadrature (I, Q) signals which are read out at the radar’s range clock rate. Overlapping
signals are accommodated by performing read-modify-write cycles which sum the returns in overlapping
range cells. A final adder is provided to sum the results of additional modules which may be added to the
system to increase signal density, i.e., additional targets, clutter, etc.

Clutter Generator Engine

The optional Clutter Generator Engine is a dedicated clutter processor which provides a high density clutter
environment for system requirements beyond the capability of the standard DSP Engine. It consists of a
two-board design based on the TMS320 digital signal processor and can be configured to output three
monopulse channels.

In both the DSP Engine and Clutter Generator modules, clutter is created by using computer generated
spectral tables that are accessed in a manner which simulates the distribution, bandwidth, and velocity

offset of the desired clutter simulation. Clutter capabilities include the generation of various forms of

clutter including sea, sea/land boundaries, birds, weather, and other natural physical phenomena.
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Wavelorm Generator

The Waveform Generator is used to match the RES output to the pulse compression used in the radar. Its
function is to convolve the compressed pulse signals generated by the DSP Engine with the radar’s
waveform.

The convolution process is performed digitally in the time domain, using digital filter circuits. The
complex filter coefficients are computed off-line by digitizing the radar waveform, and can be quickly
changed to follow the radar's pulse mode changes. The basic Waveform Generator provides a 256-point
radar waveform. The number of points is calculated by the time-bandwidth product of the radar waveform,
i.e., a single Waveform Generator is capable of simulating a 25.6 usec coded pulse with a bandwidth of

10 MHZ.

The input precision of the Waveform Generator accommodates the 16 bit I, Q signals generated by the DSP
Engine. Coefficient size is 7 bits each, I and Q, and is programmed via the PC bus interface. The
Waveform Generator maintains full dynamic resolution throughout all filter computations. A gain control
is provided to scale each of the resulting 32 bit I and Q products into 16 bit resolution for further
processing. The Waveform Generator is modular, and can be expanded both in length (to accommodate
longer pulse widths) and in the number of coefficient bits used to represent the waveform.

Qutput Interface Module

The Output Interface Module accepts data from the DSP Engine or Waveform Generator. It has space for
user defined circuitry which may be necessary to interface analog or digital video with the radar and
includes circuits to provide a feedback path to the PC for self test purposes. It also provides the physical
interface with the Digital to IF/RF Up Conversion Assembly. Digital to analog converters are provided to
monitor the final I and  outputs for test purposes.

IF/RF Up-Converter Assembly

The IF/RF Up-Converter Assembly is a separately packaged unit which converts the digital Tand Q si gnals
from the PC chassis into IF or RF outputs for injection into the radar. The design is implemented using
direct digital synthesis which minimizes offset, balance and image generation problems characteristic of
analog designs.

The RES operates under a standard Microsoft Windows™ environment. A Windows application developed
using LabVIEW for Windows (National Instruments) provides the operator interface and control mechanism
for the RES. A Virtual Insirument Control Pane! using the PC's display, mouse and keyboard allow the
operator to contro! and monitor system performance.

The PC is not involved in any real-time processing. The Windows application functions independently of
the signal generation performed by the DSP plug-in modules. The application communicates with the DSP
modules through dual-access memory which is shared between the DSP modules and the PC. This
COMMOR memory serves as a convenient interface to communicate control and status information between
the two processes.
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All real-time processing is performed by the various custom designed plug-in modules. These modules are
based on the TMS320 DSP and are optimized to efficiently execute various target and clutter signal
generation algorithms. Software for these processors is written in assembly language, and is downloaded
into the DSP modules during initialization by the PC.

Operator Control Panel

The Virtual Instrument Control Panel allows the operator to configure what types of signals are generated
and injected into the radar. Individual controls are provided to specify target velocity, radar cross section,
azimuth, elevation and range from the radar. Radar waveform modulation, (e.g., Barker Code, Linear FM,
etc.) is programmable by the operator. Clutter controls allow the operator to specify various types of
clutter and specify parameters such as gain, bandwidth and velocity offset. The operator can elect to run a
preprogramed scenario of targets and clutter which is defined by the operator in an off-line, LabVIEW for
Windows application.

In addition to controls, the Virtual
Instrument Control Panel provides a visual
feedback of target dynamics with its Plan
Position Indicator as well as individual plots
of target parameters. '

=
=
% RES-2000 RADAR ENVIRONMENT SIMULATOR { ™, ET PARAMETERS 4

ARGEY CONTROL:.

PLAN POSITION INDICATOR |

A built in test capability is included to
monitor the quality of signals generated by
the RES using the system's Fast Fourier
Transform (FFT) display. Controls are
provided to specify test parameters,
including the size of the FFT. Using the
built in test features, the operator cannot
only verify the operation of the RES, but
can also compare the characteristics of the
simulated signals with the observed results
of the radar under test.

'RADAR CONTROL )

User Configurable Parameters

Older generation RES systems typically required RES and radar characteristics to be hardwired or were
contained in firmware which were inaccessible to the user. The RES is designed to provide convenient
access to most radar and RES parameters. Standard ASCII text files contain most radar and RES
parameters which are used during the course of initialization and real time signal generation.

Examples of user defined parameters include antenna pattern tables that model the azimuth and elevation
profiles of the radar's antenna, and the radar waveform. In both cases, the user can modify or create new
ASCII text files for various custom designed RES configurations.

RES Benchmarks

The performance of the DSP Engine is limited to the number of calculations that can be performed during
the pulse repetition interval of the radar. For high PRF radars, or for systems where a high density of
targets is required, multiple DSP modules can be configured to meet the desired scenario loading. For
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benchmark purposes, the current RES Engine is capable of executing all of the calculations required to
generate a single target, within the radar beam, in approximately three micro seconds. For a one KHz PRF
radar, this equates to a capability of generating approximately 330 targets, all within the radar beam.

For configurations in which the DSP Engine is used to generate clutter, approximately one and one half
microseconds are required to complete the calculations for a single range cell. Operating with a one KHz
PRF radar, the DSP Engine is capable of generating approximately 665 cells of clutter. For simulations
requiring both targets and clutter, a DSP Engine operating with a PRF of 1 KHz, could be configured to
generate 100 targets and 465 cluiter cells.

Increased target and clutter capacity is available with the use of additional RES DSP and Clutter Engines.
As newer and faster DSP components become available, increasingly more dense target and clutter
scenarios will be possible.

Summaiy

The availability of COTS equipment and high performance DSP technology has had a significant impact

on the availability of attractively priced, specialized test equipment such as the RES described in this paper.

The use of standardized components such as the PC and LabVIEW for Windows provides a familiar
operating environment, facilitating operator training and also provides a low cost path for future system
enhancements.

302




A Radar Target Generator Architecture
Targeted Toward Free-Space Testing of Airborne Radars

Eugene H. Lowe *
Brian J. Donlan

Science Applications International Corporation
429 South Tyndall Parkway, Suite H
Panama City, FL 32404

Abstract

This paper discusses an exciting new radar target generator (RTG) architecture being developed to support
free-space testing of modern and future airborne radar systems operating in air-te-air modes. This
architecture was developed to fulfill a need at the Avionics Test and Integration Complex at Edwards AFB,
CA, and at the Air Combat Environment Test and Evaluation Facility located at the Naval Air Station,
Patuxent River, MD. The need is to test highly integrated avionics suites in their installed configuration. The
RTG architecture is designed to operate as either a stand-alene RTG or as an element of a large coordinated
test configuration. Other elements of the test suite could include CNI, IR, and EW simulators presenting a
commeon multi-spectral test scenario.

Introduction

This paper presents a new radar target generator (RTG) architecture being developed to support free-space testing of
modern and future airborne radar systems operating in air-to-air modes. The RTG architecture is designed to operate
as cither a stand-alone RTG or as an element of a large coordinated test configuration. Other elements of the test
suite could include CNI, IR, and EW simulators presenting a common multi-spectral test scenario.

System Architecture Overview

The new RTG architecture provides a stand-alone capability to produce radar target returns to test installed modern
radar systems operating in air-to-air modes. It may be installed in an anechoic chamber (e.g., the Beneficld
Anechoic Facility (BAF) or the Air Combat Environment Test and Evaluation Facility (ACETEF)) or in a ground
test laboratory. It is capable of operating via free-space radiation in an anechoic chamber or ground test laboratory
without direct connection to the radar system under test (SUT). It is also capable of utilizing SUT data bus
information and radar local oscillator samples, and of injecting return signals into the SUT radar.

The free-space RTG architecture has four independent RF channels, each with the capability to provide target skin

returns to a SUT radar. In lieu of target skin returns, the channels are capable of generating clutter (main lobe, side
lobe, or altitude line) or electronic countermeasures (ECM). The ECM capability includes noise waveforms to test a
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radar's susceptibility to selected ECM noise techniques. It also includes range deception, velocity deception, and bin
masking techniques.

The free-space RTG consists of the Operator Console/Executive Subsystem, Scenario Models Subsystem, RF
Subsystem, SUT RF Interface, SUT Interface, 1 and GTC Interface, and AOAS Interface. These clements are

illustrated in Figure I.
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Figure 1 Elements of the free-space RTG

The Operator Console/Executive Subsysiem provides the link betwecen the user and the free-space RTG. It performs
resource management functions and coordinates the activities of the other subsystems of the free-space RTG system.
The Scenario Models Subsystem creates the test scenarios based on the user’s inputs. This subsystem contains the
high fidelity player models (SUTSs, targeis, ECI, clutter, etc.), controls the player dynamics, and computes all
geometry and herdware interactions in 2 scenario. li also computes ail setup parameters for the RF Subsystem. The
RF Subsystem generates the RF radiation in a test chamber in response to the test scenario being exccuted. The RF
Subsystem interfaces with the SUT through the SUT RF Interface by receiving, storing, delaying, modulating, and
retransmitting the RE signals through the Horn Antennas (of which four are shown in Figure 1). The proposcd
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future Angle-of-Arrival Simulator (AOAS) system is also shown in this diagram to emphasize its compatibility with
the free-space RTG.

A key clement of the new architecture is the use of a replicated shared memory system as the rcal-time
communication medium between the independent processors in the RTG. Each processor in the RTG is a node on
the replicated shared memory system. This allows the processing functions to be modularized and grouped optimally
within the subsystems for case of development, testing, and integration. An important consideration in partitioning
the system was to have the interfaces transfer only high level parameters, whose formats are then converted by the
subsystem using the parameter. Another considcration was to minimize the amount of time critical data passed
through the replicated shared memory system, so that data bandwidth and latency problems could be avoided. For
instance, local copies of all tables and databases are loaded into the subsystems using them before test execution
begins. The architecture and interfaces facilitate adding more processors to run additional models of players. 1tis
also very simple to add independent RF channels to simulate more players, ECM, and clutter.

Architecture Major Advantages

The foundation components and the infrastructure designed for the free-space RTG have the capability of being
casily extended to support target generation in other spectra with the addition of spectra-specific hardware and
appropriate uscr interface and real-time softwarc enhancements. As shown in Error! Reference source not found.,
the workstations that compose the Operator Console/Executive Subsystem and the Scenario Models Subsystem can
also be used to control a millimeter wave (MMW) subsystem, an infrared (IR) stimulator, or a CNI stimulator as
long as these systems can interface to the replicated shared memory. Through the 1&GTC Interface, the free-space
RTG is

capable of using real-time commands and data from external simulation environments. The purpose of this
capability is to facilitate integrated operation with the future Infrastructure and Generic Test Capability (1&GTC).

RTG WORKSTATIONS 1&GTC
(SAIC) INTERFACE

MMW SUBSYSTEM RF SUBSYSTEM IR STIMULATOR CNI STIMULATOR

[F-22] AIRCRAFT
SYSTEM UNDER TEST

Figure 2 Multi-Spectral Testing

Another major advantage of the free-space RTG architecture is that it permits a high degree of synergy between
testing in the BAF, testing in the Integration Facility for Avionics System Testing (IFAST), and flight testing. Figure
3 shows how a common front end (operator console/executive, models, and test scenarios) can be used to conduct
tests in one facility and conduct confirming tests in the other, simply by transferring setup filcs and re-running the
test.

By modifying the spread bench F-22 RTG to interface to the replicated shared memory, the free-space RTG RF
Subsystem becomes interchangeable with the spread bench F-22 RTG.  This permits carly testing of the frec-space
RTG with the F-22 radar by using the F-22 sprcad bench in the IFAST. It also allows the spread bench F-22 RTG to
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be brought into the BAF for installed tests of the F-22 radar. This results in a very powerful and flexible testing

capability.
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Installed System Test Facility Spread Bench Avionics

Figure 3 BAF /IFAST/ Flight Testing Synergy

An objective of the Installed System Test Facility (ISTF) upgrades is to promote commonality between the ATIC
and the ACETEF. Figure 4 shows how the use of common operator console/executive, models, and test scenarios

makes this readily possible.

RTG WORKSTAT"@NS Secure Fiber Optic Link RTG WORKSTATIONS
(Common Fllo and Deta Transfer)
] I
RF, MWW, IR, CNI RF, MW, IR, CNI
STIMULATORS STIMULATORS
] |
AIRCRAFT AIRCRAFT
ATIC ACETEF

Figure 4 ATIC / ACETEF Testing Synergy
Operator Console/Executive Subsystem

The Operator Console/Executive Subsystem provides a straightforward, intuitive link between the operator (or user)
and the free-space RTG. Through Motif-style screen displays and menu options, the uscr is able to configure,
customize, execute, and monitor a myriad of RF test scenarios designed to test and cvaluate various radar systems
under test. The Executive provides the resource management functions for the free-space RTG. It schedules
resources, provides interprocess control, and maintains the compound state of all the free-space RTG subsystems.
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Bascd on a mission scenario, the Exccutive downloads sctup parameters to each of the RF modules and the Scenario
Modcls Subsystem which controls the overall operation of the test. The Executive also formulates commands which
coordinate the activitics of the RF Subsystem and SUT Simulator during Self-Test and Calibration operations.

The Operator Console/Executive provides intuitive and consistent point and click control over all aspects of a testing
cycle; that is, mission development, consistency checking, real-time monitoring of players and hardware, and sclf-
test and calibration of subsystems. The Operator Console/Exccutive allows the working environment (or tool) to be
sclected by a single mouse click. All working environments provide on-line context-scnsitive help. The Opcrator
Console/Executive allows the user to quickly build scenarios, calibrate the frec-space RTG hardwarce, and set up tests
and simulated missions. The visual technology provided with this system lets the user "drag and drop” (that is, sclect
an icon and drop it onto an appropriate form drop point) a wide assortment of objects like targets, jet enginc
modulation (JEM), clutter, calibration tables, radar cross section (RCS), etc.

A scenario can quickly be built using the drag and drop feature. Mission flight path, JEM, and target characteristics
objccts are acquired from the library function, edited as necessary, and assembled to quickly create a test scenario.
This easy-to-use scenario definition process allows multi-target scenarios to be built in minutes. With the click of a
button, the user can display a powerful satellite view of a scenario in progress. The satellite view may also be used
to preview a scenario without having to receive or generate RF. By clicking on a player object that is displayed in a
scenario satellite view, the user can observe or change the rcal-time parameters of that player; another click and the
selected parameters are displayed in a strip chart. To set up a test, the user simply employs the mouse to select from
the library a preconstructed and previewed scenario which contains all of the elements to sct up a mission. Any
sctup function is just a mouse click away. For example, clicking on the download button downloads the scenario
setup. The user is prompted when the download is complete and may then click on the start butto